Laura Baisas | Popular Science https://www.popsci.com/authors/laura-baisas/ Awe-inspiring science reporting, technology news, and DIY projects. Skunks to space robots, primates to climates. That's Popular Science, 145 years strong. Fri, 20 Oct 2023 17:00:00 +0000 en-US hourly 1 https://wordpress.org/?v=6.2.2 https://www.popsci.com/uploads/2021/04/28/cropped-PSC3.png?auto=webp&width=32&height=32 Laura Baisas | Popular Science https://www.popsci.com/authors/laura-baisas/ 32 32 CVS to stop selling cold and allergy pills that FDA warns don’t work https://www.popsci.com/health/phenylephrine-cvs-ineffective/ Fri, 20 Oct 2023 17:00:00 +0000 https://www.popsci.com/?p=581639
A box of a nasal decongestant called SudafedPe on a store shelf.
Some of the cold and allergy medications that CVS will no longer sell include Benadryl Allergy Plus Congestion, Vicks Sinex, and Sudafed PE. Tim Boyle/Getty Images

An FDA advisory committee declared that an active ingredient called phenylephrine is ineffective in pill form in September 2023.

The post CVS to stop selling cold and allergy pills that FDA warns don’t work appeared first on Popular Science.

]]>
A box of a nasal decongestant called SudafedPe on a store shelf.
Some of the cold and allergy medications that CVS will no longer sell include Benadryl Allergy Plus Congestion, Vicks Sinex, and Sudafed PE. Tim Boyle/Getty Images

As cold and flu season approaches, pharmacy chain CVS announced that they are removing some over-the-counter allergy and cold medicines from their shelves since their active ingredient has been deemed ineffective as a decongestant when taken orally. The removed medications include Vicks Dayquill, Benadryl Allergy Plus Congestion, Sudafed PE, Vicks Sinex, and others that contain a decongestant called phenylephrine.

[Related: Why adult cold medicine is not good for children.]

A CVS spokesperson told CNBC that other oral cold medications that do not contain phenylephrine as the only active ingredient will remain on CVS’ shelves. Medications that contain phenylephrine account for about  $1.8 billion in annual sales, according to the Food and Drug Administration.

In September, an independent advisory committee to the FDA declared that phenylephrine is ineffective as a decongestant when taken in pill form. The panel refused to certify the effectiveness of these medications, adding that further trials to prove otherwise were required. 

“Modern studies, when well conducted, are not showing any improvement in congestion with phenylephrine,” Mark Dykewicz, an allergy specialist at the Saint Louis University School of Medicine, told CBS News last month

In 2006, phenylephrine began to be substituted for an ingredient called pseudoephedrine in many non-prescription cold and allergy medicines. Pseudoephedrine was restricted amid reports of it being used to make the illegal drug methamphetamine. Phenylephrine cannot be used to make meth and was considered a suitable replacement. These medications with pseudoephedrine are still considered safe and can be bought without a prescription, but are now behind the pharmacy counter and require a photo ID

Allergies and respiratory infections alert the body to send white blood cells to the sinuses, nose, and throat, which causes the creation of mucus and swelling in the nasal membranes. Phenylephrine temporarily reduces the swelling in the blood vessels in the nasal passages when it is administered in the nose. Some experts say that when taken in a pill form, phenylephrine gets absorbed by the gut and metabolized so well that only a small amount of the decongestant will make it to the bloodstream. 

According to a 2015 citizen petition asking the FDA to remove drugs with phenylephrine, the amount that gets into the bloodstream is not enough to actually reach the nose and work to clear congestion. Citizen petitions like this one are a way for consumer groups, industry groups, or individuals to call on the FDA to change regulations or take other administrative action. The American Academy of Allergy, Asthma & Immunology supported this citizen petition.

[Related: Why we still don’t have a vaccine for the common cold.]

Consumers should consult a medical professional to best determine what decongestant to take, but can look for those that contain pseudoephedrine or antihistamines like Claratin or Zyrtec. Nasal sprays that contain phenylephrine are also still considered effective, in addition to those that contain another ingredient called oxymetazoline.

In September, director of endoscopic skull base surgery and a professor of otolaryngology at Stanford Medicine Zara Patel, told CNN that seeing a medication removed from store shelves like this should not be a reason to distrust regulatory agencies.

“This is how science works. As we gain more information, recommendations may change, and that’s not a bad thing. That’s the wonderful thing about science. We can use new information and change our perspective,” said Patel. She is not affiliated with the FDA committee.

Other national pharmacy chains including Walgreens and Rite Aid have not yet announced if they are pulling these medications as well.

The post CVS to stop selling cold and allergy pills that FDA warns don’t work appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Prehistoric shark called Kentucky home 337 million years ago https://www.popsci.com/science/new-shark-kentucky/ Fri, 20 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=581547
An illustration of a newly discovered shark species called Strigilodus tollesonae. The shark looks somewhat like a stingray, with outstretched wings, fan-like top fins, and a long tail with black spots.
An artist’s illustration of Strigilodus tollesonae. The new species is more closely related to modern ratfish than to other modern sharks and rays. Benji Paysnoe/NPS

Newly discovered Strigilodus tollesonae had petal-shaped teeth.

The post Prehistoric shark called Kentucky home 337 million years ago appeared first on Popular Science.

]]>
An illustration of a newly discovered shark species called Strigilodus tollesonae. The shark looks somewhat like a stingray, with outstretched wings, fan-like top fins, and a long tail with black spots.
An artist’s illustration of Strigilodus tollesonae. The new species is more closely related to modern ratfish than to other modern sharks and rays. Benji Paysnoe/NPS

A group of paleontologists, park rangers, and geologists have discovered a new species of ancient shark in the rock layers of Mammoth Cave National Park in Kentucky. It was uncovered in a large fossil deposit that includes at least 40 different species of shark and their relatives, and even well-preserved skeletal cartilage. 

[Related: Megalodons were likely warm-blooded, despite being stone-cold killers.]

The new species is named Strigilodus tollesonae and is a petalodont shark. These extinct  sharks had petal-shaped teeth and lived about 337 million years ago. According to the National Park Service, it is more closely related to present day ratfish than sharks or rays and it was identified from teeth found in the cave’s walls. Strigilodus tollesonae likely had teeth that included one rounded cusp used for clipping and a long, ridge inert side that crushed prey the way molars do. Paleontologists believe that it likely lived like modern day skates and fed on worms, bivalves, and small fish. 

Strigilodus tollesonae translates to “Tolleson’s Scraper Tooth” and it is named after Mammoth Cave National park guide Kelli Tolleson for her work in the paleontological study that uncovered the new species. 

The limestone caves that make up the 400-mile long Mammoth Cave System were formed about 325-million-years ago during the Late Paleozoic. Geologists call this time period the Mississippian Period, when shallow seas covered much of North America including where Mammoth Cave is today. 

In 2019, the park began a major paleontological resources inventory to identify the numerous types of fossils associated with the rock layers. Mammoth Cave park staff reported a few fossil shark teeth that were exposed in the cave walls of Ste. Genevieve Limestone in several locations. Shark fossils can be difficult to come by, since shark skeletons are made of cartilage instead of bone. Cartilage is not as tough as bone, so it is generally not well-preserved in the fossil record. 

An artist’s illustration of an ancient sea that covered much of North America during the Mississippian age. A decaying shark lies on the bottom of the sea, with three live sharks and other fish swimming nearby.
The Mississippian age ancient sea and marine life preserved at Mammoth Cave National Park. CREDIT: Julius Csotonyi/NPS.

The team then brought in shark fossil specialist John-Paul Hodnett of the Maryland-National Capital Parks and Planning Commission to help identify the shark fossils. Hodnett and park rangers discovered and identified multiple different species of primitive sharks from the shark teeth and fine spine specimens in the rocks lining the cave passages.

“I am absolutely amazed at the diversity of sharks we see while exploring the passages that make up Mammoth Cave,” Hodnett said in a statement. “We can hardly move more than a couple of feet as another tooth or spine is spotted in the cave ceiling or wall. We are seeing a range of different species of chondrichthyans [cartilaginous fish] that fill a variety of ecological niches, from large predators to tiny little sharks that lived amongst the crinoid [sea lily] forest on the seafloor that was their habitat.”

[Related: This whale fossil could reveal evidence of a 15-million-year-old megalodon attack.]

In addition to Strigilodus tollesonae, the team have identified more than 40 different species of sharks and their relatives from Mammoth Cave specimens in the past 10 months. There appear to be at least six fossil shark species that are new to science. According to the team, those species will be described and named in an upcoming scientific publication.

The majority of the shark fossils have been discovered in areas of the park that are inaccessible to the public, so photographs, illustrations, and three-dimensional models have been made to display the discovery. The park also plans to celebrate the new shark fossils with multiple presentations and exhibits on Monday October 23

The post Prehistoric shark called Kentucky home 337 million years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why a 3,000-mile-long jet stream on Jupiter surprised NASA scientists https://www.popsci.com/science/jwst-jupiter-jet-stream/ Thu, 19 Oct 2023 17:15:00 +0000 https://www.popsci.com/?p=581172
An image of Jupiter taken with the James Webb Space Telescope’s NIR Cam in July 2022. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet.
In July 2022, James Webb Space Telescope’s NIR Cam captured this image of Jupiter in infrared light. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

JWST captured a never-before-seen jet stream with winds twice as strong as a Category 5 hurricane.

The post Why a 3,000-mile-long jet stream on Jupiter surprised NASA scientists appeared first on Popular Science.

]]>
An image of Jupiter taken with the James Webb Space Telescope’s NIR Cam in July 2022. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet.
In July 2022, James Webb Space Telescope’s NIR Cam captured this image of Jupiter in infrared light. Researchers recently discovered a narrow jet stream traveling 320 miles per hour sitting over Jupiter’s equator above the main cloud decks. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

Jupiter and its dynamic atmosphere are ready for another closeup in a new image taken with the James Webb Space Telescope (JWST). Using the telescope’s data, scientists have discovered a new and never-before-captured high-speed jet stream. The jet stream sits over Jupiter’s equator above the main cloud decks, barrels at speeds twice as high as a Category 5 hurricane, and spans more than 3,000 miles. The findings were described in a study published October 19 in the journal Nature Astronomy.

[Related: This hot Jupiter exoplanet unexpectedly hangs out with a super-Earth.]

Jupiter is the largest planet in our solar system and its atmosphere has some very visible features, including the infamous Great Red Spot, which is large enough to swallow the Earth. The planet is ever-changing and there are still mysteries in this gas giant that scientists are trying to unravel. According to NASA, the new discovery of the jet stream is helping them decipher how the layers of Jupiter’s famously turbulent atmosphere interact with each other. Now, JWST is helping scientists look further into the planet and see some of the lower and deeper layers of Jupiter’s atmosphere where gigantic storms and ammonia ice clouds reside. 

“This is something that totally surprised us,” study co-author Ricardo Hueso said in a statement.  “What we have always seen as blurred hazes in Jupiter’s atmosphere now appear as crisp features that we can track along with the planet’s fast rotation.” Hueso is an astrophysicist at the University of the Basque Country in Bilbao, Spain.

The research team analyzed data from JWST’s Near-Infrared Camera (NIRCam) that was obtained in July 2022. The Early Release Science program was designed to take images of Jupiter 10 hours apart (one Jupiter day) in four different filters. Each filter detected different types of changes in the small features located at various altitudes of Jupiter’s atmosphere.

Space Telescope photo
At a wavelength of 2.12 microns, which observes between altitudes of about 12-21 miles above Jupiter’s cloud tops, researchers spotted several wind shears, or areas where wind speeds change with height or with distance, which enabled them to track the jet. This image highlights several of the features around Jupiter’s equatorial zone that, between one rotation of the planet (10 hours), are very clearly disturbed by the motion of the jet stream. CREDIT: NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

The resulting image shows Jupiter’s atmosphere in infrared light. The jet stream is located over the equator, or center, of the planet. There are multiple bright white spots and streaks that are likely very high-altitude cloud tops of condensed convective storms. Jupiter’s northern and southern poles are dotted by auroras that appear red and extend to the higher altitudes of the planet. 

“Even though various ground-based telescopes, spacecraft like NASA’s Juno and Cassini, and NASA’s Hubble Space Telescope have observed the Jovian system’s changing weather patterns, Webb has already provided new findings on Jupiter’s rings, satellites, and its atmosphere,” study co-author and University of California, Berkeley astronomer Imke de Pater said in a statement.  

The newly discovered jet stream travels at roughly 320 miles per hour and is located close to 25 miles above the clouds, in Jupiter’s lower stratosphere. The team compared the winds observed by JWST at higher altitudes with the winds observed at deeper layers by the Hubble Space Telescope. This enabled them to measure how fast the winds change with altitude and generate wind shears.

[Related: Jupiter formed dinky little rings, and there’s a convincing explanation why.]

The team hopes to use additional observations of Jupiter to determine if the jet’s speed and altitude change over time. 

“Jupiter has a complicated but repeatable pattern of winds and temperatures in its equatorial stratosphere, high above the winds in the clouds and hazes measured at these wavelengths,” Leigh Fletcher, a study co-author and planetary scientists at the University of Leicester in the United Kingdom, said in a statement. “If the strength of this new jet is connected to this oscillating stratospheric pattern, we might expect the jet to vary considerably over the next 2 to 4 years–it’ll be really exciting to test this theory in the years to come.”

The post Why a 3,000-mile-long jet stream on Jupiter surprised NASA scientists appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Atlantic hurricanes are getting stronger faster than they did 40 years ago https://www.popsci.com/environment/atlantic-hurricanes-stronger-faster/ Thu, 19 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=581073
A satellite photo showing the swirling clouds of Hurricane Lee and Tropical Storm Margot in the Atlantic Ocean.
On the morning of September 11, 2023, Hurricane Lee (left) churned in the Atlantic Ocean northeast of Puerto Rico, with Tropical Storm Margot (right) further to the east. NOAA

The probability of a weak hurricane strengthening to become a major hurricane within 24 hours has more than doubled in recent decades.

The post Atlantic hurricanes are getting stronger faster than they did 40 years ago appeared first on Popular Science.

]]>
A satellite photo showing the swirling clouds of Hurricane Lee and Tropical Storm Margot in the Atlantic Ocean.
On the morning of September 11, 2023, Hurricane Lee (left) churned in the Atlantic Ocean northeast of Puerto Rico, with Tropical Storm Margot (right) further to the east. NOAA

There is about a month and a half left in the 2023 Atlantic Hurricane season, and it’s a season that has seen some rapidly intensifying storms. In less than 24 hours, Hurricane Idalia went from a Category 1 hurricane to a Category 4 with winds near 130 MPH. The storm made landfall on Florida’s Gulf Coast as a high Category 3. Weeks later, Hurricane Lee grew from a Category 1 storm to a Category 5 in only 24 hours.

[Related: The future of hurricanes is full of floods—a lot of them.]

According to a study published October 19 in the journal Scientific Reports, Atlantic hurricanes may be more than twice as likely to strengthen from a Category 1 storm to a major Category 3 hurricane or higher in a 24-hour period than they were between 1970 and 1990. They also are more likely to strengthen more rapidly along the east coast of the United States.

As ocean temperatures continue to reach record highs due to human-caused climate change, the trend is worrying. Tropical weather systems like hurricanes and tropical storms gain strength over unusually warm sea surface temperatures. Warm ocean water is like carbohydrates for hurricanes and gives the storms more energy. Faster storm intensification has already been linked to climate change, but the changes in the intensification rates of storms across the 41 million square mile wide Atlantic Ocean Basin have been less clear. 

“Our oceans have absorbed about 90 percent of the excess warming that has occurred in recent decades due to human-caused climate change,” study co-author and Rowan University climate scientist Andra Garner tells PopSci. “I wanted to see what kinds of changes might already have occurred to the overall rates at which Atlantic hurricanes have been strengthening.”

In the study, Garner looked at every Atlantic hurricane between 1970 and 2020 and analyzed how the wind speed changed over each hurricanes’ lifespan. The storms were split into three time periods–a historical era (1970 to 1990), an intermediate era (1986 to 2005), and a modern era (2001 to 2020). To establish the maximum intensification rate, Garner calculated the greatest increase in wind speed over any 24-hour period within the hurricane’s lifespan. 

She found that the chance of a hurricane’s maximum intensification rate being 23 miles per hour or more had increased from 42.3 percent in the historical era to 56.7 percent today. The probability of a weak hurricane strengthening to become a major hurricane in 24 hours also increased from 3.23 percent to 8.12 percent. 

“The storms we’ve seen this year, like Hurricane Idalia and Hurricane Lee, align with what my research findings would tell us to expect,” Garner says. “Hurricane Idalia and Hurricane Lee both occurred over exceptionally warm ocean waters, and strengthened quickly as a result of those warm ocean waters (and other favorable conditions). I think that this lines up very well with a trend that my research indicates that we could expect to continue if ocean waters continue to warm.”

[Related: Florida’s aquatic animals prepare early for storms like Hurricane Idalia.]

The locations within the Atlantic Basin where hurricanes were most likely to see their maximum intensification rate has also changed between these eras. Hurricanes were more likely to strengthen most quickly off the Atlantic coast of the US and in the Caribbean Sea, and less likely to strengthen most quickly in the Gulf of Mexico. 

Better understanding these locations and intensification rates could help create better action plans for communities at risk. Three of the five of the most economically damaging Atlantic hurricanes have all occurred since 2017 and these storms all had rapid growth. According to Garner, this is an “urgent warning for humanity,” and it should continue without major changes to our behavior and quickly transitioning away from fossil fuels. However, there is still time to act. 

“It’s really important to remember that there is absolutely still hope. We know that we are the cause of this problem, which means we can also be the solution—and we already have the tools at our disposal (green energy, etc.) to actually be the solution,” says Garner. “So there’s hope that we could secure a more sustainable future.”

The post Atlantic hurricanes are getting stronger faster than they did 40 years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Female honeybees may pass down ‘altruistic’ genes https://www.popsci.com/environment/honeybees-altruism/ Wed, 18 Oct 2023 17:00:00 +0000 https://www.popsci.com/?p=580768
A group of worker bees surround the queen bee on a honeycomb. All worker honeybees are female and they can go to extreme lengths to serve their queen even shedding their own ovaries.
All worker honeybees are female and they can go to extreme lengths to serve their queen even shedding their own ovaries. Deposit Photos

Honeybee genes might make workers serve the queen above themselves.

The post Female honeybees may pass down ‘altruistic’ genes appeared first on Popular Science.

]]>
A group of worker bees surround the queen bee on a honeycomb. All worker honeybees are female and they can go to extreme lengths to serve their queen even shedding their own ovaries.
All worker honeybees are female and they can go to extreme lengths to serve their queen even shedding their own ovaries. Deposit Photos

Honeybees are a model of teamwork in nature, with their complex society and hives that generate enough energy to create an electrical charge. They also appear to be some of the rare animals that display a unique trait of altruism, which is genetically inherited. The findings were described in a study published September 25 in the journal Molecular Ecology.

[Related: Bee brains could teach robots to make split-second decisions.]

Giving it all for the queen bee

According to the American Psychological Association, humans display altruism through behaviors that benefit another individual at a cost to oneself. Some psychologists consider it a uniquely human trait and studying it in animals requires a different framework for understanding. Animals experience a different level of cognition, so what drives humans to be altruistic might be different than what influences animals like honeybees to act in ways that appear to be altruistic.

In this new study, the researchers first looked at the genetics behind retinue behavior in worker honeybees. Retinue behavior is the actions of worker bees taking care of the queen, like feeding or grooming her. It’s believed to be triggered by specific pheromones and worker bees are always female. 

After the worker bees are exposed to the queen’s mandibular pheromone (QMP), they deactivate their own ovaries. They then help spread the QMP around to the other worker bees and they only take care of the eggs that the queen bee produces. Entomologists consider this behavior ‘altruistic’ because it benefits the queen’s ability to produce offspring, while the worker bees remain sterile. 

The queen is also typically the mother of all or mostly all of the honeybees in the hive. The genes that make worker bees more receptive to the queen’s pheromone and retinue behavior can be passed down from either female or male parent. However, the genes only result in altruistic behavior when they are passed down from the female bee parent.

“People often think about different phenotypes being the result of differences in gene sequences or the environment. But what this study shows is it’s not just differences in the gene itself—it’s which parent the gene is inherited from,” study co-author and Penn State University doctoral candidate Sean Bresnahan said in a statement. “By the very nature of the insect getting the gene from its mom, regardless of what the gene sequence is, it’s possibly going to behave differently than the copy of the gene from the dad.”

A battle of genetics 

The study supports a theory called the Kinship Theory of Intragenomic Conflict. It suggests that a mothers’ and fathers’ genes are in a conflict over what behaviors to support and not support. Previous studies have shown that genes from males can support selfish behavior in mammals, plants, and honeybees. This new study is the first known research that shows females can pass altruistic behavior onto their offspring in their genes. 

[Really: What busy bees’ brains can teach us about human evolution.]

Worker bees generally have the same mother but different fathers, since the queen mates with multiple male bees. This means that the worker bees share more of their mother’s genes with each other. 

“This is why the Kinship Theory of Intragenomic Conflict predicts that genes inherited from the mother will support altruistic behavior in honeybees,” Breshnahan said. “A worker bee benefits more from helping, rather than competing with, her mother and sisters—who carry more copies of the worker’s genes than she could ever reproduce on her own. In contrast, in species where the female mates only once, it is instead the father’s genes that are predicted to support altruistic behavior.”

Pinpointing conflict networks

To look closer, the team crossbred six different lineages of honeybees. Bresnahan says that this is relatively easy to do in mammals or plants, but more difficult in insects. They used honeybee breeding expertise from co-author Juliana Rangel from Texas A&M University and Robyn Underwood at Penn State Extension to create these populations.

Once the bee populations were successfully crossed and the offspring were old enough, the team assessed the worker bees’ responsiveness to the pheromone that triggers the retinue behavior. 

A female lab technician wearing a protective covering to keep her safe from bee stings points to a bee hive on a rooftop lab.
Penn State Grozinger lab technician Kate Anton inspectS a hive on the rooftop of Millennium Science Complex at Penn State University. CREDIT: Brennan Dincher

“So, we could develop personalized genomes for the parents, and then map back the workers’ gene expression to each parent and find out which parent’s copy of that gene is being expressed,” Bresnahan said.

The team identified the gene regulatory networks that have this intragenomic conflict, finding that more genes that have a parental bias were expressed. These networks consisted of genes that previous research showed were related to the retinue behavior.

“Observing intragenomic conflict is very difficult, and so there are very few studies examining the role it plays in creating variation in behavior and other traits,” study co-author and Penn State entomologist Christina Grozinger said in a statement. “The fact that this is the third behavior where we have found evidence that intragenomic conflict contributes to variation in honeybees suggests that intragenomic conflict might shape many types of traits in bees and other species.”

The team hopes that this research will help provide a blueprint for more studies into intragenomic conflict in other animals and plants.

The post Female honeybees may pass down ‘altruistic’ genes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What the ‘Ring of Fire’ eclipse looked like to a satellite nearly 1 million miles from Earth https://www.popsci.com/science/ring-of-fire-eclipse-satellite-view/ Wed, 18 Oct 2023 13:00:00 +0000 https://www.popsci.com/?p=580642
The planet Earth, as seen from the DSCOVR satellite. Earth appears as a bright blue dot against the darkness of space, with the shadow of an annular solar eclipse over much of North America.
An image of the annular solar eclipse on October 14, 2023 taken by NASA's EPIC camera aboard the DSCOVR spacecraft. NASA/DSCOVR EPIC team

The DSCOVR satellite image depicts the moon’s shadow during the October 14 annular eclipse.

The post What the ‘Ring of Fire’ eclipse looked like to a satellite nearly 1 million miles from Earth appeared first on Popular Science.

]]>
The planet Earth, as seen from the DSCOVR satellite. Earth appears as a bright blue dot against the darkness of space, with the shadow of an annular solar eclipse over much of North America.
An image of the annular solar eclipse on October 14, 2023 taken by NASA's EPIC camera aboard the DSCOVR spacecraft. NASA/DSCOVR EPIC team

The recent “ring of fire” solar eclipse looked stunning across portions of North and South America and we now have a new view of the stellar event. The Deep Space Climate Observatory (DSCOVR) satellite created the image of the eclipse on Saturday October 14, depicting the mostly blue Earth against the darkness of space, with one large patch of the planet in the shadow of the moon. 

[Related: Why NASA will launch rockets to study the eclipse.]

Launched in 2015, DSCOVR is a joint NASA, NOAA, and U.S. Air Force satellite. It offers a unique perspective since it is close to 1 million miles away from Earth and sits in a gravitationally stable point between the Earth and the sun called Lagrange Point 1. DSCOVR’s primary job is to monitor the solar wind in an effort to improve space weather forecasts

A special device aboard the satellite called the Earth Polychromatic Imaging Camera (EPIC) imager took this view of the eclipse from space. According to NASA, the sensor gives scientists frequent views of the Earth. The moon’s shadow, or umbra, is falling across the southeastern coast of Texas, near Corpus Christi.

An annular solar eclipse occurs when the moon moves between Earth and the sun. The sun does not vanish completely in this kind of eclipse. Instead, the moon is positioned far enough from Earth to keep the bright edges of the sun visible. This is what causes the “ring of fire,” as if the moon has been outlined with bright paint.

The annular eclipse on October 14, 2023, as seen from Earth. CREDIT: NASA.

While this year’s event could be seen to some degree across the continental United States, the 125-mile-wide path of annularity began in Oregon around 9:13 AM Pacific Daylight Time. The moon’s shadow then moved southeast across Nevada, Utah, Arizona, Colorado, and New Mexico, before passing over Texas and the Gulf of Mexico. It continued south towards Mexico’s Yucatan, Peninsula, Belize, Honduras, Nicaragua, Costa Rica, Panama, Colombia, and Brazil

Unlike the colorful Aurora Borealis, eclipses are much easier to predict. Scientists can say when annular and solar eclipses will happen down to the second centuries in advance. The precise positions of the moon and the sun and how they shift over time is already known, so scientists can see how the moon’s shadow will fall onto Earth’s globe. Advances in computer technology have also enabled scientists to even chart eclipse paths down to a range of a few feet.

[Related: We can predict solar eclipses to the second. Here’s how.]

The next annular solar eclipse will be at least partially visible from South America on October 2,2024. One of these ‘ring of fire’ eclipses will not be visible in the United States until June 21, 2039. However, a total solar eclipse will darken the sky from Maine to Texas on April 8, 2024. There is still plenty of time to get eclipse glasses or make a pinhole camera to safely watch the next big celestial event. 

The post What the ‘Ring of Fire’ eclipse looked like to a satellite nearly 1 million miles from Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Giant quake that shook Mars for hours had a surprising source https://www.popsci.com/science/mysterious-marsquake-source/ Tue, 17 Oct 2023 21:00:00 +0000 https://www.popsci.com/?p=580492
An artist's illustration of a cutaway of Mars along with the paths of seismic waves from two separate quakes in 2021. These seismic waves, detected by NASA’s InSight mission, were the first ever identified to enter another planet’s core.
An artist's illustration of a cutaway of Mars along with the paths of seismic waves from two separate quakes in 2021. These seismic waves, detected by NASA’s InSight mission, were the first ever identified to enter another planet’s core. NASA/JPL-Caltech/University of Maryland

NASA's InSight lander captured the 4.7 magnitude seismic event in 2022.

The post Giant quake that shook Mars for hours had a surprising source appeared first on Popular Science.

]]>
An artist's illustration of a cutaway of Mars along with the paths of seismic waves from two separate quakes in 2021. These seismic waves, detected by NASA’s InSight mission, were the first ever identified to enter another planet’s core.
An artist's illustration of a cutaway of Mars along with the paths of seismic waves from two separate quakes in 2021. These seismic waves, detected by NASA’s InSight mission, were the first ever identified to enter another planet’s core. NASA/JPL-Caltech/University of Maryland

A giant seismic event on Mars—a “marsquake”—that shook the Red Planet last year had an unexpected source, surprising astrophysicists from around the world. They suspected a meteorite strike. Instead, enormous tectonic forces within Mars’s crust, which caused vibrations that lasted for six hours, caused the quake and not a meteorite strike. The findings are described in a study published October 17 in the journal Geophysical Research Letters.

[Related: Two NASA missions combined forces to analyze a new kind of marsquake.]

NASA’s InSight lander recorded the magnitude 4.7 marsquake on May 4, 2022, which scientists named S1222a. Its seismic signal was similar to those of previous quakes that were caused by meteorite impacts, so the team began to search for an impact crater. 

In the new study, a team from the University of Oxford worked with the European Space Agency, Chinese National Space Agency, the Indian Space Research Organisation, and the United Arab Emirates Space Agency to scour more than 55 million square miles on Mars. Each group examined the data coming from its own satellites to look for a crater, dust cloud, or other signature of a meteorite impact. Because the search came up empty, they now believe that S1222a was caused by the release of huge tectonic forces from within the Martian interior. 

That doesn’t mean Mars’s tectonic plates are moving the way they do during an earthquake. The best available evidence suggests the planet is remaining still. “We still think that Mars doesn’t have any active plate tectonics today, so this event was likely caused by the release of stress within Mars’ crust,” study co-author and University of Oxford planetary geophysicist Benjamin Fernando said in a statement. “These stresses are the result of billions of years of evolution; including the cooling and shrinking of different parts of the planet at different rates.”

While Fernando explains that scientists do not fully understand why some parts of Mars seem to have more stress than others, these results can help them investigate further. “One day, this information may help us to understand where it would be safe for humans to live on Mars and where you might want to avoid!” he said.

Mars photo
This spectrogram shows the largest quake ever detected on another planet. Estimated at magnitude 5, this quake was discovered by NASA’s InSight lander on May 4, 2022. CREDIT: NASA/JPL-Caltech/ETH Zurich.

S1222a was one of the last events recorded by NASA’s InSight mission before its end. The InSight lander launched in May 2018 and survived “seven minutes of terror” to touch down on Mars, where it studied the planet’s interior and seismology for years. The last of the spacecraft’s data was returned in December 2022, after increasing dust accumulation on its solar panels caused InSight to lose power. 

[Related: InSight says goodbye with what may be its last wistful image of Mars.]

In its four years and 19 days of service, InSight recorded more than 1,300 marsquakes. At least eight of these events were from a meteorite impact; the largest two formed craters that were almost 500 feet in diameter. If the S1222a event was formed by an impact, the team estimates that the crater to be would have been at least 984 feet in diameter.

The team is applying knowledge from this study to other work, including future missions to our moon and the tectonics that are similar to California’s famed San Andreas fault located on one of Saturn’s moons named Titan. They also hope that it encourages additional major international collaborations to study the Red Planet and beyond. 

“This has been a great opportunity for me to collaborate with the InSight team, as well as with individuals from other major missions dedicated to the study of Mars,” study co-author and New York University Abu Dhabi astrophysicist Dimitra Atri said in a statement. “This really is the golden age of Mars exploration!”

The post Giant quake that shook Mars for hours had a surprising source appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The world’s hottest chili pepper is worse than bear spray https://www.popsci.com/science/guinness-world-records-hottest-chili-pepper/ Tue, 17 Oct 2023 19:00:00 +0000 https://www.popsci.com/?p=580407
A yellow-ish pepper named Pepper X sits on a crystal dish. Pepper X is the new hottest chili pepper in the world. It was crossbreed with Carolina Reaper and a mystery pepper.
Pepper X is the new hottest chili pepper in the world. It was crossbreed with Carolina Reaper and a mystery pepper. Courtesy of First We Feast

Guinness World Records crowns Pepper X as the new spicy pepper king.

The post The world’s hottest chili pepper is worse than bear spray appeared first on Popular Science.

]]>
A yellow-ish pepper named Pepper X sits on a crystal dish. Pepper X is the new hottest chili pepper in the world. It was crossbreed with Carolina Reaper and a mystery pepper.
Pepper X is the new hottest chili pepper in the world. It was crossbreed with Carolina Reaper and a mystery pepper. Courtesy of First We Feast

The Guinness World Records officially dubbed Pepper X the world’s hottest chili pepper earlier this year, going public with the announcement on October 9. Pepper X has a rating of an average of 2.69 million Scoville Heat Units (SHU). On the SHU scale, zero is considered bland, while a regular jalapeño pepper registers at about 5,000 SHU. For a non-food comparison, pepper spray used in self-defense is about 1.6 million SHUs and bear spray is about 2.2 million.

[Related: Spiciness isn’t a taste, and more burning facts about the mysterious sensation.]

Winthrop University in South Carolina calculated this off-the-charts Scobille score with specimens collected over the past four years. Pepper X has a greenish-yellow color with grooves and ridges. According to the five brave souls who have eaten it, Pepper X has an earthy flavor once the heat begins to subside.  

It dethroned the 10-year reign of the 1.64 million SHU Carolina Reaper, but both peppers were created by the same chili pepper expert to be extra spicy. Ed Currie is the founder of Puckerbutt Pepper Company and he has been working on Pepper X since the bright red Carolina Reaper first took the title in 2013.

When creating a new breed of pepper, it can take several years for the desired traits to emerge through selective breeding. It takes about 10 generations for hybrid peppers to stabilize with predictable traits and consistent fruit.

Pepper X was a crossbreed with Carolina Reaper and a mystery pepper that Currie did not disclose. His goal was to create an extremely hot pepper that also had some sweetness. The spice of Pepper X even made an expert like Currie wince in pain.

“I was feeling the heat for three-and-a-half hours. Then the cramps came,” Currie told the Associated Press. “Those cramps are horrible. I was laid out flat on a marble wall for approximately an hour in the rain, groaning in pain.”

Currie unveiled Pepper X on an episode of hit YouTube series Hot Ones.

A chemical in peppers called capsaicin is what causes the burning sensation when eating a spicy pepper like the Carolina Reaper or Pepper X. Humans and other mammals will perceive capsaicin as a threat when eaten, which sends the strong burning signal throughout the body. 

According to University of Tennessee epidemiologist Paul D. Terry, the short-term effects of eating extremely spicy foods range from enjoying the sensation of heat to a more unpleasant burning sensation on the lips, tongue, and mouth. Spicy foods can also cause various forms of digestive tract discomfort, headaches, and vomiting, so it is best to avoid eating them if you experience these effects. 

[Related: Leftovers of a 2,000-year-old curry discovered on stone cooking tools.]

Capsaicin is harmful except when eaten in large quantities and is likely not harmful over a long period of time. Some experts generally agree that spicy food does not cause stomach ulcers, but the association with stomach cancer isn’t as clear.

The burning sensation also releases endorphins and dopamine. Currie began growing peppers after overcoming addiction to drug and alcohol and says that kick is a natural high for him. He shares the peppers he creates with medical researchers, in hopes that they can be used to explore new cures for disease or help those with chronic pain or discomfort.

The post The world’s hottest chili pepper is worse than bear spray appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Europeans ate a lot more seaweed 8,000 years ago https://www.popsci.com/environment/seaweed-ancient-european-diets/ Tue, 17 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=580386
Coral Beach on Scotland’s Isle of Skye, dotted with various types of seaweed.
Coral Beach on Scotland’s Isle of Skye, dotted with various types of seaweed. Deposit Photos

There are about 10,000 different species of seaweeds around the world today, but only 145 species are regularly consumed.

The post Europeans ate a lot more seaweed 8,000 years ago appeared first on Popular Science.

]]>
Coral Beach on Scotland’s Isle of Skye, dotted with various types of seaweed.
Coral Beach on Scotland’s Isle of Skye, dotted with various types of seaweed. Deposit Photos

The ocean’s diverse seaweeds are full of nutrients and can be very tasty. While seaweed is common in many Asian dishes, it is not as popular in many traditionally European cuisines. However, this was not always the case. New archaeological evidence also shows that early Europeans ate seaweeds and freshwater plants 8,000 years ago. The findings are described in a study published October 17 in the journal Nature Communications and anchor the plants in the past.

[Related: Why seaweed is a natural fit for replacing certain plastics.]

In the study, researchers examined biomarkers that were taken from the calcified dental plaque of 74 individuals found at 28 archaeological sites from northern Scotland to southern Spain. The plaques revealed “direct evidence for widespread consumption of seaweed and submerged aquatic and freshwater plants.”

The samples where biomolecular evidence survived showed signs that red, green, or brown seaweed and freshwater aquatic plants were eaten. One sample from Scotland’s Orkney archipelago also had evidence of a type of sea kale. The researchers also found that seaweeds and freshwater plants were continually eaten in Europe into the Early Middle Ages. 

“Not only does this new evidence show that seaweed was being consumed in Europe during the Mesolithic Period around 8,000 years ago when marine resources were known to have been exploited, but that it continued into the Neolithic when it is usually assumed that the introduction of farming led to the abandonment of marine dietary resources,” study co-author and University of York bioarchaeologist Stephen Buckley said in a statement.

The nutritional benefits from eating seaweed were likely very well understood by ancient European populations. Some historical accounts report laws related to collection of seaweed in Iceland, France, and Ireland dating back to the 10th Century. Sea kale is also mentioned by Roman naturalist and writer Pliny as an anti-scurvy remedy for sailors on long sea voyages. Through the 18th century, seaweed was considered a famine food and is featured in a popular Irish-language folk song

[Related: Why seaweed farming could be the next big thing in sustainability.]

Currently, there are roughly 10,000 different species of seaweeds around the world, but only 145 species are regularly consumed. Depending on the type of seaweed, the plants are a great source of fiber, iron, and potassium among other vitamins and minerals. Cultivating seaweed can also be very environmentally friendly, as the seaweed produces oxygen while absorbing excess nitrogen in the water.

“Our study also highlights the potential for rediscovery of alternative, local, sustainable food resources that may contribute to addressing the negative health and environmental effects of over-dependence on a small number of mass-produced agricultural products that is a dominant feature of much of today’s western diet, and indeed the global long-distance food supply more generally,”  study co-author and University of Glasgow archaeologist Karen Hardy said in a statement. “It is very exciting to be able to show definitively that seaweeds and other local freshwater plants were eaten across a long period in our European past.”

The post Europeans ate a lot more seaweed 8,000 years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
12-million-year-old ape skull bares its fangs in virtual reconstruction https://www.popsci.com/science/12-million-year-old-ape-skull/ Mon, 16 Oct 2023 19:00:00 +0000 https://www.popsci.com/?p=579915
Three stage of digital reconstruction. From left, the Pierolapithecus cranium shortly after discovery, after initial preparation, and after virtual reconstruction.
From left, the Pierolapithecus cranium shortly after discovery, after initial preparation, and after virtual reconstruction. David Alba (left)/Salvador Moyà-Solà (middle)/Kelsey Pugh (right)

Now extinct, Pierolapithecus catalaunicus could be one of the earliest known members of the great ape and human family.

The post 12-million-year-old ape skull bares its fangs in virtual reconstruction appeared first on Popular Science.

]]>
Three stage of digital reconstruction. From left, the Pierolapithecus cranium shortly after discovery, after initial preparation, and after virtual reconstruction.
From left, the Pierolapithecus cranium shortly after discovery, after initial preparation, and after virtual reconstruction. David Alba (left)/Salvador Moyà-Solà (middle)/Kelsey Pugh (right)

A team of scientists from Spain and the United States reconstructed the skull of an extinct great ape species from a set of well-preserved, but damaged skeletal remains. The bones belonged to Pierolapithecus catalaunicus who lived roughly 12 million years ago. Studying its facial features could help us better understand human and ape evolution and the findings are described in a study published October 16 in the journal Proceedings of the National Academy of Sciences (PNAS).

[Related: This 7th-century teen was buried with serious bling—and we now know what she may have looked like.]

First described in 2004, Pierolapithecus was a member of a diverse group of extinct ape species that lived during the Miocene Epoch (about 15 to 7 million years ago) in Europe. During this time, horses were beginning to evolve in North America and the first dogs and bears also began to appear. The Miocene was also a critical time period for primate evolution.

In the study, the team used CT scans to virtually reconstruct Pierolapithecus’ cranium. They then used a process called principal components analysis and compared their digital reconstruction of the face with other primate species. They then modeled the changes occurring to some key features of ape facial structure. They found that Pierolapithecus shares similarities in its overall face shape and size with fossilized and living great apes. 

However, it also has distinct facial features that have not been found in other apes from the Middle Miocene. According to the authors, these results are consistent with the idea that Pierolapithecus represents one of the earliest members of the great ape and human family. 

“An interesting output of the evolutionary modeling in the study is that the cranium of Pierolapithecus is closer in shape and size to the ancestor from which living great apes and humans evolved,” study co-author and AMNH paleoanthropologist Sergio Almécija said in a statement. “On the other hand, gibbons and siamangs (the ‘lesser apes’) seem to be secondarily derived in relation to size reduction.”

Studying the physiology of extinct animals like Pierolapithecus can help us understand how other species evolved. This particular primate species is important because the team used a cranium and partial skeleton that belonged to the same individual ape, which is a rarity in the fossil record. 

[Related: Our tree-climbing ancestors evolved our abilities to throw far and reach high.]

“Features of the skull and teeth are extremely important in resolving the evolutionary relationships of fossil species, and when we find this material in association with bones of the rest of the skeleton, it gives us the opportunity to not only accurately place the species on the hominid family tree, but also to learn more about the biology of the animal in terms of, for example, how it was moving around its environment,” study co-author Kelsey Pugh said in a statement. Pugh is a primate palaeontologist with the American Museum of Natural History (AMNH) in New York and Brooklyn College.

Earlier studies on Pierolapithecus suggest that it could have stood upright and had multiple adaptations that allowed these hominids to hang from tree branches and move throughout them. However, Pierolapithecus’ evolutionary position is still debated, partially due to the damage to the specimen’s cranium.  

“One of the persistent issues in studies of ape and human evolution is that the fossil record is fragmentary, and many specimens are incompletely preserved and distorted,” study-coauthor and AMNH biological anthropologist Ashley Hammond said in a statement. “This makes it difficult to reach a consensus on the evolutionary relationships of key fossil apes that are essential to understanding ape and human evolution.”

The post 12-million-year-old ape skull bares its fangs in virtual reconstruction appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
US will build seven regional ‘hydrogen hubs’ to spark clean energy transition https://www.popsci.com/environment/us-hydrogen-hubs/ Mon, 16 Oct 2023 17:10:00 +0000 https://www.popsci.com/?p=580010
Secretary of Energy Jennifer Granholm speaks before US President Joe Biden at Tioga Marine Terminal on October 13, 2023 in Philadelphia, Pennsylvania. Biden discussed how his Bidenomics agenda is creating good-paying union jobs, investing in infrastructure, accelerating the transition to a clean energy future, and combating the climate crisis.
Secretary of Energy Jennifer Granholm speaks before US President Joe Biden at Tioga Marine Terminal on October 13, 2023 in Philadelphia, Pennsylvania. Biden discussed how his Bidenomics agenda is creating good-paying union jobs, investing in infrastructure, accelerating the transition to a clean energy future, and combating the climate crisis. Mark Makela/Getty Images

The hubs will be spread across 16 states and aim to eliminate 25 million metric tons of carbon dioxide emissions.

The post US will build seven regional ‘hydrogen hubs’ to spark clean energy transition appeared first on Popular Science.

]]>
Secretary of Energy Jennifer Granholm speaks before US President Joe Biden at Tioga Marine Terminal on October 13, 2023 in Philadelphia, Pennsylvania. Biden discussed how his Bidenomics agenda is creating good-paying union jobs, investing in infrastructure, accelerating the transition to a clean energy future, and combating the climate crisis.
Secretary of Energy Jennifer Granholm speaks before US President Joe Biden at Tioga Marine Terminal on October 13, 2023 in Philadelphia, Pennsylvania. Biden discussed how his Bidenomics agenda is creating good-paying union jobs, investing in infrastructure, accelerating the transition to a clean energy future, and combating the climate crisis. Mark Makela/Getty Images

On October 13, President Joe Biden and Energy Secretary Jennifer Granholm announced plans to develop seven regional clean hydrogen hubs across the US. The hubs will receive $7 billion in funding from the Bipartisan Infrastructure Law to accelerate the domestic market for low-cost, clean hydrogen.

These new hubs aim to produce more than three million metric tons of clean hydrogen annually. They are estimated to help eliminate 25 million metric tons of carbon dioxide emissions, or roughly the combined annual emissions of over 5.5 million gasoline-powered cars. 

According to the White House, advancing clean hydrogen is essential to achieving President Biden’s “vision of a strong clean energy economy that strengthens energy security, bolsters domestic manufacturing, creates healthier communities, and delivers new jobs and economic opportunities across the nation.” 

Why hydrogen?

Hydrogen is the simplest and most abundant element on Earth. However, it rarely exists on its own in nature and instead is usually found in compound form like in water (H20). Elemental hydrogen is also an energy carrier, meaning it can transport energy in a usable form from one place to another. However, hydrogen must be produced from another substance in order to do this.

Hydrogen fuel is made by separating water molecules, sometimes using a device called an electrolyzer. Fuel from hydrogen can also be produced from natural gas during a process called steam methane reforming that combines methane with steam. 

While a clean fuel itself, the current processes used to make it is anything but clean. Large quantities of fossil fuels are used, which emit greenhouse gasses like carbon dioxide and methane. Energy companies are working to advance cleaner versions of making emission-free hydrogen fuel and California, Texas, and Colorado are already working to become clean hydrogen centers.  

[Related: This liquid hydrogen-powered plane successfully completed its first test flights.]

These newly announced hubs will be focused on the goal of reducing the carbon dioxide emissions from hydrogen production. This huge undertaking will require large amounts of renewable energy to power the manufacturing process. It could also require additional nuclear power and a large network of carbon storage facilities that will grab and bury emissions in the regions where natural gas is still used to make hydrogen.

Cleanly manufacturing hydrogen could help decarbonize multiple industries in the US, as hydrogen is used to make fertilizer and is important in the chemical and petrochemical industry

“This has potential to be transformative,” Oleksiy Tatarenko, who focuses on hydrogen at RMI, a clean energy advocacy group, told The Washington Post. “But we need to get it right from day one. We need to ensure this hydrogen can demonstrate climate benefits.”

How long will this take?

Granholm tells PopSci that the initiative provides the US with the opportunity for,  “creating an entirely new economy around hydrogen and putting thousands and thousands of people to work, particularly people who have powered our nation for the last century.” 

The hubs will be an asset in bringing hydrogen production up to scale, to reduce the currently high costs of hydrogen production. It also incorporates multiple industries from construction to operations to design. 

“For the seven hydrogen hubs, it’s about a one-to six-investment, meaning for every dollar the federal government puts in, six dollars come from the private sector, so it’s government enabled, but private sector led,” says Granholm. “These projects are not just one year projects, these are projects that last several years to be able to plan and design, build, and operate.”

Where will the ‘hydrogen hubs’ be located?

The seven new hydrogen hubs will stretch across 16 states and are organized by geographic region.

“These states that were selected are not awardees yet. There’s a negotiation period that will occur between selection and award. So there is a period of time there for states to make sure that they’ve got an environment that will make these hubs of success, “ explains Granholm.

[Related: A beginner’s guide to the ‘hydrogen rainbow.’]

The Mid-Atlantic hub in Pennsylvania, Delaware, and New Jersey will repurpose old oil infrastructure and use renewable and nuclear electricity from both established and innovative electrolyzer technologies.

The Appalachian hub will be located across West Virginia, Southeastern Ohio, and Southwestern Pennsylvania. This hub is slated to be among the largest in terms of production and will use the region’s methane gas to derive hydrogen. 

The California hub will span the entire Golden State and encompass the busy ports Long Beach, Los Angeles, and Oakland to produce hydrogen exclusively from renewable energy and biomass.

A Gulf Coast hub will be based in Houston, Texas, and could potentially expand into Louisiana. Houston is the traditional energy capital of the US and the plans for this hub include large-scale hydrogen production through both natural gas with carbon capture and renewables-powered electrolysis.

The Heartland Hydrogen hub spanning Minnesota, North Dakota, and South Dakota will use wind energy to derive hydrogen in an effort to decarbonize the region’s critical agricultural sector. 

The Midwest hub in Illinois, Indiana, Michigan will further decarbonize industrial sectors by using hydrogen in steel and glass production, power generation, refining, heavy-duty transportation, and sustainable aviation fuel.

The Pacific Northwest hub in parts of Eastern Washington State, Oregon, and parts of Montana plans to produce clean hydrogen exclusively from renewable sources.

“The hub design in itself is important because it creates clusters of supply and demand that are close to one another, minimizing the need to tackle challenges that would come with moving hydrogen long distances,” Adria Wilson, the hydrogen policy lead at Breakthrough Energy, told CNBC.

The post US will build seven regional ‘hydrogen hubs’ to spark clean energy transition appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Wildlife exits on Texas roads could help endangered ocelots https://www.popsci.com/environment/wildlife-exit-ocelots/ Mon, 16 Oct 2023 13:30:00 +0000 https://www.popsci.com/?p=579895
An endangered Texas ocelot in the vicinity of the highway.
An endangered Texas ocelot in the vicinity of the highway. Kline Lab/University of Texas Rio Grande Valley

Specially designed crossings keep animals from getting hit by cars.

The post Wildlife exits on Texas roads could help endangered ocelots appeared first on Popular Science.

]]>
An endangered Texas ocelot in the vicinity of the highway.
An endangered Texas ocelot in the vicinity of the highway. Kline Lab/University of Texas Rio Grande Valley

The endangered Texas ocelot is in serious trouble due to a combination of over-hunting, habitat loss, inbreeding, and getting hit by cars. Only two populations of these bobcat sized spotted and striped carnivores remain in Texas and they’re isolated from a larger population living in northwestern Mexico by highways and buildings. 

[Related: Watch bobcats, bears, and even birds use fallen logs as bridges.]

One conservation measure to help endangered ocelots and other animals near busy roads are special wildlife exits. A study published October 13 in the journal Frontiers in Ecology and Evolution found that 10 mammal species use these special structures, which could help prevent more collisions with traffic.

Chain-link fencing along Texas highways has been used to reduce wildlife mortality from colliding with cars and trucks. However, this fencing can trap animals that get on the highway if they jump over or burrow under the fencing. In 2018, the Texas Department of Transportation built 10 exits for the endangered ocelots in an effort to keep the animals from getting trapped. The openings in the fencing are about 18 inches across and 23 inches wide and are funnel shaped to encourage the ocelots to move away from the highway and into the surrounding habitat. 

This new study tested if these wildlife exits are used by medium-sized carnivores in Texas. Two automatic cameras were installed at each of the 10 wildlife exits along a 7.3-mile stretch of State Highway 100 between Los Fresnos and Laguna Vista. The cameras were inspected every month between February 2019 and November 2020 and a team of scientists downloaded the images and sorted them into species. 

They found that the wildlife exits were used by 10 mammal species to get off the highway. The species ranged from the smaller black-tailed jackrabbits and Virginia opossums up to bobcats and coyotes. For the coyotes and bobcats, their activity peaked around 10 PM and then again between midnight and dawn.

Endangered Species photo
Two coyotes using a wildlife exit to leave the road. CREDIT: Kline Lab/University of Texas Rio Grande Valley.

“Here we show that a range of species, including middle-sized carnivores such as bobcats and coyotes, successfully use wildlife exits, a new type of mitigation structure specifically designed for the US endangered ocelot,” study co-author and former University of Texas Rio Grande Valley graduate student said in a statement

While the ocelots themselves were not photographed using the exits due to their small numbers, other automatic cameras near the highway saw them. About 43 percent of bobcats, a surrogate species for the ocelot, used the exits. According to the team, observing bobcats and coyotes using the exits implies that the endangered ocelots are likely to do so as well. 

[Related: Grizzlies are getting killed by roads, but the risks are bigger than roadkill.]

“We anticipated that the extreme rarity of ocelots would limit the amount of data collected on that species,” study co-author and conservation biologist  at the University of Texas Rio Grande Valley Kevin Ryer said in a statement. “For this reason, we also focused on more common bobcats and coyotes, as they have similar habitats, diets, body sizes, and behaviors as ocelots, with overlapping home ranges between them.”

The largest local species including white-tailed deer, nilgai, and javelina, could not use the narrow wildlife exits. Tunnels and crossing girds are the best methods for helping these bigger animals avoid traffic collisions. 

While the exits appear to function as designed, additional research could create improvements that prevent wildlife from going in the wrong direction. These wildlife exits also have the potential to be a valuable conservation measure on Texas highways.

“Wildlife collision mitigation is less expensive to implement during the construction phase of highways than retrofitting mitigation after construction,” study co-author and University of Texas Rio Grande Valley biologist Richard Kline said in a statement. “Although the entire wildlife community near the highway should be considered when planning mitigation, endangered species should be the focus.”

The post Wildlife exits on Texas roads could help endangered ocelots appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Neanderthals may have hunted mighty cave lions https://www.popsci.com/science/neanderthal-cave-lion-hunt/ Fri, 13 Oct 2023 13:00:00 +0000 https://www.popsci.com/?p=579416
The cave lion remains from Siegsdorf, Germany are displayed alongside a reproduction of a wooden spear similar to those used by Neanderthals.
The cave lion remains from Siegsdorf, Germany are displayed alongside a reproduction of a wooden spear similar to those used by Neanderthals. Volker Minkus/NLD

The fierce feline predators went extinct at the end of the last Ice Age.

The post Neanderthals may have hunted mighty cave lions appeared first on Popular Science.

]]>
The cave lion remains from Siegsdorf, Germany are displayed alongside a reproduction of a wooden spear similar to those used by Neanderthals.
The cave lion remains from Siegsdorf, Germany are displayed alongside a reproduction of a wooden spear similar to those used by Neanderthals. Volker Minkus/NLD

Neanderthals cooked crab and created art, but they also could have haunted cave lions and used their skins. Some 48,000 year-old puncture wounds on a cave lion’s ribcage suggest that the big cat was killed by a Neanderthal’s wooden spear. The findings are described in a study published October 12 in the journal Scientific Reports and may be the earliest known example of lion hunting and butchering by these extinct humans.

[Related: Sensitive to pain? It could be your Neanderthal gene variants.]

For about 20,000 years, cave lions were the most dangerous animals in Eurasia, with a shoulder height of about 4.2 feet high. They lived in multiple environments and hunted large herbivores including mammoth, bison, hose, and cave bear. They get the name cave lions due to the fact that most of their bones have been found in Ice Age caves. The fearsome creatures went extinct at the end of the last Ice Age, but live on through their bones and the 34,000 rock art panels at Grotte Chauvet in France. 

In 1985, an almost complete cave lion skeleton was uncovered in Siegsdorf, Germany. The bones are believed to be from an old, medium-sized cave lion. There are cut marks across bones including two ribs, some vertebrae, and the left femur, which lead scientists to believe that ancient humans butchered the big cat after it died.  

However, the authors in this new study took another look at the remains. They describe a partial puncture wound located on the inside of the lion’s third rib. The wound appears to match the impact mark left by a wooden-tipped spear. The puncture is angled, which suggests that the spear entered the left of the lion’s abdomen and penetrated its vital organs before impacting the third rib on its right side. 

“The rib lesion clearly differs from bite marks of carnivores and shows the typical breakage pattern of a lesion caused by a hunting weapon,” Gabriele Russo, a study co-author and zooarchaeology PhD student at Universität Tübingen in Germany, said in a statement

The characteristics of the puncture wound also resemble the wounds found on deer vertebrae which are known to have been made by Neanderthal spears. The new findings could represent the earliest evidence of Neanderthals purposely hunting cave lions.

“The lion was probably killed by a spear that was thrust into the lion’s abdomen when it was already lying on the ground.” study co-author and University of Reading paleolithic archaeologist Annemieke Milks said in a statement

[Related: How many ancient humans does it take to fight off a giant hyena?]

The team also analyzed the findings from a 2019 excavation at the Unicorn Cave–or Einhornhöhle–in the Harz Mountains in Germany. The remains of several animals dating back to the last Ice Age or about 55,000 to 45,000 years ago were found, including some cave lion bones. They looked at bones from the toes and lower limbs of three cave lion specimens. These bones also had cut marks that are consistent with the markings generated when an animal is skinned.

The cut marks suggest that great care was taken while skinning the lion to ensure that the claws remained preserved within the fur. This finding could be the earliest evidence of Neanderthals using a lion pelt, potentially for cultural purposes.

“The interest of humans to gain respect and power from a lion trophy is rooted in Neanderthal behavior and until modern times the lion is a powerful symbol of rulers!” Thomas Terberger, a study co-author and archaeologist at the Universität Göttingen in Germany said in a statement

Future studies of cave lion bones could reveal more details of more complex Neanderthal behaviors and how the animal may have laid the basis for cultural development by our own species—Homo sapiens

The post Neanderthals may have hunted mighty cave lions appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This year’s heaviest pumpkin could be baked into 700 pies https://www.popsci.com/environment/2023-world-champion-giant-pumpkin/ Fri, 13 Oct 2023 12:00:00 +0000 https://www.popsci.com/?p=579411
Travis Gienger of Anoka, Minnesota celebrates during a pumpkin-weighing contest in Half Moon Bay, California.
Travis Gienger of Anoka, Minnesota celebrates during a pumpkin-weighing contest in Half Moon Bay, California. Li Jianguo/Xinhua via Getty Images

At 2,749 pounds, the giant, Guinness World Record-breaking gourd weighs about as much as a car.

The post This year’s heaviest pumpkin could be baked into 700 pies appeared first on Popular Science.

]]>
Travis Gienger of Anoka, Minnesota celebrates during a pumpkin-weighing contest in Half Moon Bay, California.
Travis Gienger of Anoka, Minnesota celebrates during a pumpkin-weighing contest in Half Moon Bay, California. Li Jianguo/Xinhua via Getty Images

Hello gourd-geous! Travis Gienger from Anoka, Minnesota won the 50th World Championship Pumpkin Weigh-Off with a pumpkin weighing a whopping 2,749 pounds. This year’s victorious, lumpy veggie is named Michael Jordan and it could be baked into almost 700 pies. 

[Related: How do you breed a 2,624-pound pumpkin?]

According to Guinness World Records, the previous world record holder for heaviest pumpkin was a 2,702 pound squash grown in Italy in 2021.

Gienger is a horticulture teacher at Anoka Technical College who has been growing pumpkins for almost three decades, currently nurturing the behemoths in a patch in his backyard. This year, he decided to give the plants some extra care by watering them up to 12 times per day, in addition to extra fertilizing and feeding.  

He is a second generation great pumpkin grower, who first competed at the annual weigh-off in Half Moon Bay, California in 2020. Since then, he has won three of the city’s last four giant pumpkin contests. His 2,350 pound pumpkin named Tiger King won in 2020. The somehow even bigger pumpkin Maverick won in 2022 at 2,560 pounds.

He also shares the world record for the largest jack-’o-lantern by circumference. He won this prestigious honor in October 2022 for a pumpkin carved to look like an eagle with a circumference of 242 inches.

“I put in the work so that I can put a smile on people’s faces and it’s just so nice coming out here to see everyone in this town,” Gienger told The Associated Press.

Gienger won a $30,000 prize, most of which he plans to put into his daughter’s college fund and the rest will be used to “reinvest in the hobby.”

The annual Half Moon Bay Art & Pumpkin Festival draws thousands of visitors every fall for multiple pumpkin-themed activities. The coastal city is known for large pumpkin patches, making it an ideal spot for this festival. 

Growing these giant gourds first took off during the 1970s, but it was not until 1996 that the first 1,000 pounder hit the pumpkin scene. Growers use special seeds that are annually swapped to create giant gourds. A pumpkin’s growing season can last over 100 days, giving them significantly more time to reach these titanic proportions than other crops. They also have a thick and woody rind that protects them better than other vegetables that have a high concentration of water.

[Related: These fungi demand more pumpkin in their pumpkin spice lattes.]

Most record-breaking pumpkins are a variety called Dill’s Atlantic Giant. They have been bred to produce increasingly large offspring. Some prize winners could have some innate advantages, including larger vascular tissue or a natural ability to grow faster, resist pests, or take in more nutrients from the soil. 

When not artificially flavoring lattes, getting carved up for decoration, or being the center of competitions, pumpkins are an excellent food to eat. They are chock full of nutrients that support the immune system, are heart-healthy, and their versatility makes them easy to fit into different types of dishes. 

The post This year’s heaviest pumpkin could be baked into 700 pies appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Female frogs appear to play dead to avoid mating https://www.popsci.com/environment/female-frog-mating-play-dead/ Thu, 12 Oct 2023 16:00:00 +0000 https://www.popsci.com/?p=579103
Two frogs mating in a body of water.
The behavior could also be a way to test a male frog's strength and endurance. Deposit Photos

Other animals tend to 'play possum' to avoid being eaten.

The post Female frogs appear to play dead to avoid mating appeared first on Popular Science.

]]>
Two frogs mating in a body of water.
The behavior could also be a way to test a male frog's strength and endurance. Deposit Photos

To avoid the amphibian pile-up that often comes with mating, some female frogs take drastic measures. According to research published October 11 in the journal Royal Society Open Science, female European common frogs will lay completely still and play dead to fend off potential mates. 

[Related: Check out some of the weirdest warty frogs in North America.]

In the study, a team from the Natural History Museum of Berlin in Germany placed a male frog in a box with one large female and one small female and recorded the mating behavior. They observed 54 instances of female frogs being clutched by the males and 83 percent of females tried rotating their body when gripped. About 48 percent of clasped females emitted “release calls” like squeaks and grunts and all of these vocal frogs rotated their bodies. 

Thirty-three percent of the frogs clasped by male expressed tonic immobility. This is when a frog stiffens its outstretched arms and legs to appear dead. The immobility tended to occur alongside both rotating and calling. Smaller females more frequently used all three tactics together than the bigger frogs. 

Interestingly, this unusual behavior had actually been seen centuries before. “I found a book written in 1758 by Rösel von Rosenhoff describing this behavior, which was never mentioned again,” study co-author Carolin Dittrich told The Guardian. “It was previously thought that females were unable to choose or defend themselves against this male coercion. Females in these dense breeding aggregations are not passive as previously thought.”

The team acknowledges that this behavior could also be a way to test a male’s strength and endurance, as those traits could boost their survival chances. They also point out that a larger sample size is needed to see if smaller females are more successful at escaping. 

This playing tactic is also used by other animals as a way to avoid being eaten.

The phrase “playing possum”  refers to a tactic deployed by the North American opossum found in the United States and Canada. When this marsupial is threatened by a predator, it will throw itself onto its back, bare its teeth, drool, and excrete a very bad smelling liquid out of its anal glands to get out of danger. 

North American wood ducks and colorful mallard ducks can immediately collapse when confronted with predators. In a 1975 experiment, 29 out of 50 different wild ducks played dead when they were exposed to captive red foxes. The ducks would also stay still long enough to be brought back to the fox’s den and wait until later to escape. The veteran foxes quickly learned that they needed to quickly deal a fatal injury to ducks that appeared dead.

[Related: Why some tiny frogs have tarantulas as bodyguards.]

Despite being apex predators, multiple species of sharks and rays also exhibit tonic immobility. Lemon sharks will turn onto their back and exhibit labored breathing and an occasional tremor when facing danger. Zebra sharks will also do this and will even stay immobile when being transported. 

Male nuptial gift-giving spiders will display a different death feigning behavior called thanatosis. It’s part of a courtship ritual that begins before mating with potentially cannibalistic female spiders. In a 2006 experiment, the males would “drop dead” when a female approached with interest. When entering thanatosis, the males would collapse and remain completely still, while retaining a gift of prey the male has already caught and wrapped in silk The male only cautiously begins to move when the female ate the gifts and initiated copulation.

The post Female frogs appear to play dead to avoid mating appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why no two sourdoughs are exactly the same https://www.popsci.com/health/flour-sourdough-bacteria/ Thu, 12 Oct 2023 14:00:00 +0000 https://www.popsci.com/?p=579086
Two loaves of rustic sourdough bread on a wooden counter.
Rye flour created the most diverse bacteria than any of the 10 flours in a new study. Deposit Photos

Flour in your starter will eventually create unique, funky flavors.

The post Why no two sourdoughs are exactly the same appeared first on Popular Science.

]]>
Two loaves of rustic sourdough bread on a wooden counter.
Rye flour created the most diverse bacteria than any of the 10 flours in a new study. Deposit Photos

While sourdough starter is not the social media star it was in the early days of the COVID-19 pandemic, sourdough bread is still deliciously easy to make at home. It’s also a prime canvas for studying microbes. A study published October 4 in the open-access journal PeerJ found that using different types of flour creates different bacterial communities. These variations contribute to sourdough’s unique flavors and aromas. 

[Related: How to make a sourdough starter—and keep it alive.]

Professional and at-home bakers alike can influence the aroma of their loaves of sourdough bread simply by using different flours, according to study co-author and North Carolina State University microbial ecologist Erin McKenney.

“Our new work focuses on the role that different types of flour play in shaping those microbial ecosystems,” McKenney said in a statement. “As it turns out, the flour bakers use to ‘feed’ their starters plays a significant role in determining which types of bacteria thrive. And that, in turn, strongly influences the aroma that these sourdoughs produce.”

In this new study, McKenney and a team of researchers developed a protocol designed to reproduce what bakers actually do in their kitchens. They created four sourdough starters using 10 different flours, creating 40 starters in total. A sourdough starter is an active colony of wild yeast and good bacteria. It is cultivated by combining water and flour and then allowing the two to ferment. When it is continually fed, it forms a reliable “natural yeast” culture that can be used to raise or leaven breads and other pastries. 

The team used five flours that contain gluten: unbleached all-purpose flour, red turkey wheat, emmer, rye, and einkorn. They also used five gluten-free flours: teff, millet, sorghum, buckwheat, and amaranth. 

For 14 days, all 40 starters were kept in the same growing environment and were fed once a day. They collected data from each starter, measuring the pH and height all while recording the different scents each start was producing. The team also sampled the starters for DNA sequencing to determine the diversity and abundance of bacteria in each of the samples.

“We found that the starters started out being fairly similar to each other, but that changed substantially over time,” McKenney said. “Over the course of the 14 days, we found that each type of flour formed increasingly distinct microbial communities. Essentially, it appears that different types of bacteria are able to make the most of the nutritional compounds found in different types of flour.”

[Related: A new kind of quinoa flour may be coming to a sugar cookie near you.]

A variety of bacterial communities thriving on different nutritional inputs can yield a wide variety of metabolic outputs, as different bacteria produce different smells.

“The bacterial community in amaranth sourdough produces an aroma that smells almost exactly like ham,” McKenney says. “I’ve never smelled a sourdough that had such a meaty aroma. Rye produces a fruity aroma, buckwheat has an earthy smell, and so on. There’s a tremendous amount of variation.”

The study came with a few surprises. The rye flour created a much wider diversity of bacteria than any other type of flour the team studied with over 30 types of bacteria at maturity. Buckwheat came in second place for most diverse bacteria with 22 types. All of the other flours had between three and 14.

They also found that seven out of the 10 flours produced starters that had high levels of bacteria which produce acetic acid, making up between 12.6 and 45.8 percent of the bacteria from the flours. This acid often acts as a leavening agent when it is combined with baking soda. Starters made using teff, amaranth, and buckwheat were all lacking the acetic acid bacteria. 

“So it’s [the acetic acid] playing a significant role in those microbial ecosystems. This is surprising because we didn’t even know this type of bacteria was found in sourdough until 2020. Our previous work found that it was not uncommon, but to see it at such high levels, across so many types of flour, was definitely interesting,” said McKenney.

While McKenney and her team were working with bread under a microscope and in a lab, this kind of research also has more practical insights for sourdough enthusiasts. It shows how home bakers can modify the flour in starters to get the exact flavors and smells they are looking for. Starters take 10 days to become “functionally mature,” which is also helpful for bakers looking to time their next sourdough loaf. 

The post Why no two sourdoughs are exactly the same appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mummified poop reveals a diverse ancient Caribbean diet https://www.popsci.com/science/mummified-poop-carribbean-diet/ Wed, 11 Oct 2023 18:00:00 +0000 https://www.popsci.com/?p=578685
Sweet potato, brown eggs, and corn in a husk on a stove. Traces of sweet potato, peanut, chili peppers, papaya, and more were found in coprolite samples from Puerto Rico.
Traces of sweet potato, peanut, chili peppers, papaya, and more were found in coprolite samples from Puerto Rico. Deposit Photos

Sweet potatoes, papayas, and maize were all on the menu.

The post Mummified poop reveals a diverse ancient Caribbean diet appeared first on Popular Science.

]]>
Sweet potato, brown eggs, and corn in a husk on a stove. Traces of sweet potato, peanut, chili peppers, papaya, and more were found in coprolite samples from Puerto Rico.
Traces of sweet potato, peanut, chili peppers, papaya, and more were found in coprolite samples from Puerto Rico. Deposit Photos

The world of mummified poop, or coprolites, offers a fascinating look into the parasites and snacks that pass through people and animals’s digestive systems. Seeing what foods were around can give archeologists an idea of the landscape hundreds of years ago. A new DNA analysis of mummified poop from two pre-Columbian Caribbean cultures reveals that they ate a wide variety of plants, tobacco, and even cotton. The findings are described in a study published October 11 in the open-access journal PLOS ONE.

[Related: Ancient poop proves that humans have always loved beer and cheese.]

The study looked at the coprolites from two pre-Columbian cultures called the Huecoid and Saladoid. An earlier study of centuries old fecal matter supports a hypothesis that the Huecoid likely originated in the Andes Mountains in present-day Bolivia and Peru before migrating among different islands in the Caribbean around the third century CE. The Saladoid people likely originated in modern day Venezuela and traveled to the Puerto Rican island of Vieques by the sixth century CE.

“Archeologists at the University of Puerto Rico dedicated over 30 years to digs on the Island of Vieques, finding the coprolites along with many other priceless artifacts,” Gary A. Toranzos, study co-author and environmental microbiologist/paleo microbiologist at the University of Puerto Rico, tells PopSci. “One would consider finding coprolites easy [since] they are deposited every day. However, most people will not recognize them and the conditions for coprolite formation need to be very specific.”

Coprolites need dryness to preserve the DNA and it was believed that this preservation was impossible due to the Carribbean’s humid climate.  

“Narganes and Chanlate proved them wrong,” Toranzos says. 

In the study, Toranzos and microbiologist Jelissa Reynoso-García carefully extracted and analyzed plant DNA from ten coprolite samples from the La Hueca archaeological site in Puerto Rico. They then compared the extracted plant DNA against a database of diverse coprolite samples and contemporary plant DNA sequences.

They found that the Huecoid and Saladoid peoples enjoyed a diverse and sophisticated food system, including sweet potato, wild and domesticated peanut, chili peppers, a domesticated strain of tomatoes, papaya, and maize. Their analysis also detected tobacco, potentially due to chewing tobacco, pulverized tobacco inhalation, or tobacco as a food additive for medicinal and/or hallucinogenic purposes. 

[Related: What prehistoric poop reveals about extinct giant animals.]

Surprisingly, cotton was also detected in the samples. This could have been from ground cotton seeds used in oil or because women wet the cotton strands with their saliva leaving strands in the mouth while weaving. 

Additionally, they did not not find evidence of cassava consumption. Cassava is a root vegetable also called yucca and manioc. The authors were surprised that there weren’t any traces of it in these samples, as this plant was often reported as a staple food in the pre-Columbian Caribbean in sources from the time

Coprolites and artifacts recovered from the Huecoid and Saladoid archaeological sites.CREDIT: Chanlatte and Narganes, CC-BY 4.0
Coprolites and artifacts recovered from the Huecoid and Saladoid archaeological sites. CREDIT: Chanlatte and Narganes, CC-BY 4.0

“Cassava DNA was not found, likely because of the extensive preparation of the cassava powder to get rid of toxins in the plant,” says Toranzos.

Different food preparation techniques means that each coprolite sample is only a snapshot of what one specific person had been recently eating. The authors were only able to identify plants that are in current DNA sequence databases and plants that are now-extinct, rare, and in non-commercial crops were not detected. While it’s likely that the Huecoid and Saladoid people ate other plants or fungi than the study notes. The authors hope this analysis gives further insight into the lives of pre-Columbian people of the Americas.

“Even poop is a great resource for agriculture, and many other things,” Toranzos says. “Now we see they are a great way of obtaining information from those who lived thousands of years before us.”

The post Mummified poop reveals a diverse ancient Caribbean diet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Star-making hot spot looks like a glowing raven in new JWST image https://www.popsci.com/science/jwats-ngc-346-stars/ Wed, 11 Oct 2023 16:00:00 +0000 https://www.popsci.com/?p=578669
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars.
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. Image–NASA, ESA, CSA, STScI, Nolan Habel (NASA-JPL). Image Processing–Patrick Kavanagh (Maynooth University).

This new infrared image of NGC 346 traces emissions from cool gas and dust.

The post Star-making hot spot looks like a glowing raven in new JWST image appeared first on Popular Science.

]]>
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars.
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. Image–NASA, ESA, CSA, STScI, Nolan Habel (NASA-JPL). Image Processing–Patrick Kavanagh (Maynooth University).

The James Webb Space Telescope (JWST) is showing off its imaging prowess again, this time with a stellar image of NGC 346. This is the brightest and biggest star-making region in a satellite galaxy of the Milky Way called the Small Magellanic Cloud (SMC). The SMC is about 21,000 light-years away in the southern constellation Tucana. 

[Related: JWST takes a jab at the mystery of the universe’s expansion rate.]

The image that looks like Edgar Allan Poe’s ominous raven in some angles was taken using Webb’s Mid-Infrared Instrument (MIRI). The blue wisps of light show emissions from molecules like silicates and polycyclic aromatic hydrocarbons. The red fragments highlight dust that is warmed by the largest and brightest stars in the center.

An arc at the center left might be a reflection of light from the star near the center of the arc, and similar curves appear to be associated with strats at the lower left and upper right. The bright patches and filaments denote areas with large numbers of protostars. While looking for the reddest stars, the research team found 1,001 pinpoint sources of light. Most of these are young stars still snuggled up in their dusty cocoons.

This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars.
This new infrared image of NGC 346 from NASA’s James Webb Space Telescope’s Mid-Infrared Instrument (MIRI) traces emission from cool gas and dust. In this image blue represents silicates and sooty chemical molecules known as polycyclic aromatic hydrocarbons, or PAHs. More diffuse red emission shines from warm dust heated by the brightest and most massive stars in the heart of the region. Bright patches and filaments mark areas with abundant numbers of protostars. CREDITS: Image–NASA, ESA, CSA, STScI, Nolan Habel (NASA-JPL). Image Processing–Patrick Kavanagh (Maynooth University).

This SMC is more primeval than the Milky Way since it possesses fewer heavy elements. According to NASA, these elements are forged in stars through nuclear fusion and supernova explosions, compared to our own galaxy.

“Since cosmic dust is formed from heavy elements like silicon and oxygen, scientists expected the SMC to lack significant amounts of dust,” NASA wrote in a press release. “However the new MIRI image, as well as a previous image of NGC 346 from Webb’s Near-Infrared Camera released in January, show ample dust within this region.”

Astronomers can combine JWST’s data in both the near-infrared and mid-infrared data to take a fuller census of the stars and protostars within this very dynamic region of space. This could help us better understand the galaxies that have existed billions of years ago, during an era known as Cosmic Noon. During Cosmic Noon, star formation was at its peak. Heavy element concentrations were lower, which we can see when we study the SMC.

[Related: The Whirlpool Galaxy’s buff, spiral arms grab JWST’s attention.]

This raven-like image is not the first JWST image that is picture perfect for spooky season. In September 2022, it released chilling new images of 30 Doradus aka the Tarantula Nebula. The nebula’s arachnid inspired nickname comes from its similar appearance to a burrowing tarantula’s silk-lined home. The Tarantula Nebula is about 161,000 light-years away from Earth in the Large Magellanic Cloud galaxy, which is home to some of the hottest and biggest stars known to astronomers.

JWST has also imaged the “bones” of  IC 5332, a spiral galaxy over 29 million light years away from the Earth in the constellation Sculptor. The uniquely shaped galaxy has a diameter of roughly 66,000 light years, making it slightly larger than our Milky Way galaxy. The MIRI aboard the new telescope observes the furthest reaches of the universe and can see infrared light, so it’s able to peer through the galaxy’s clouds of dust and into the “skeleton” of stars and gas underneath its signature arms. MIRI basically was able to take an x-ray of a galaxy, revealing IC 5332’s bones and a world that looks different, yet somewhat the same.

The post Star-making hot spot looks like a glowing raven in new JWST image appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Fierce mama Grazer takes 2023’s Fat Bear Week crown https://www.popsci.com/environment/fat-bear-week-winner-2023/ Wed, 11 Oct 2023 12:30:00 +0000 https://www.popsci.com/?p=578638
Grazer looking chunky and getting ready for winter on September 14, 2023. The bear is in the river intensely staring for salmon.
Grazer looking chunky and getting ready for winter on September 14, 2023. NPS Photo/F. Jimenez

'It was the year of the sow.'

The post Fierce mama Grazer takes 2023’s Fat Bear Week crown appeared first on Popular Science.

]]>
Grazer looking chunky and getting ready for winter on September 14, 2023. The bear is in the river intensely staring for salmon.
Grazer looking chunky and getting ready for winter on September 14, 2023. NPS Photo/F. Jimenez

Bear enthusiasts of the world have spoken—128 Grazer was just crowned the winner of Fat Bear Week 2023. This is Grazer’s first time wearing the crown, and she beat out runner up 32 Chunk in the fierce Fat Bear Tuesday final by over 85,000 votes.

[Related: It’s Fat Bear season again! This is the best feed to keep up with these hairy giants.]

According to the National Park Service, Grazer is a large adult female, boasting a long straight muzzle, light brown summer fur, and blond ears. During late summer and fall, she is often one of the fattest bears to feed on the plentiful salmon in the Brooks River in Alaska’s Katmai National Park and Preserve.

She is also a particularly defensive mother bear who has raised two litters of cubs. Grazer is known for preemptively confronting and attacking much larger bears—even the large and dominant adult males—to keep her cubs safe. One of Katmai’s adult males named 151 Walker even avoids her, even though she did not have any cubs to protect this season. 

An Instagram post from Katmai National Park and Preserve of the Fat Bear Week 2023 bracket, with bear 128 Grazer in the center.

Grazer is the third female bear, or sow, to win the tournament. In 2019, 435 Holly was dubbed fattest bear and 409 Beadnose wore the prestigious crown in 2018. Beadnose is believed to have died in the five years since. 

“The girls did really well this year,” media ranger at Katmai National Park and Preserve Naomi Boak told The Washington Post. “It was the year of the sow.”

Like any competition, this year’s voting was packed with twists and turns. Four-time Fat Bear Week Champion 480 Otis was ousted on Friday October 6. Otis is the oldest and among the park’s most famous bears. This year, he arrived at Brooks River very skinny, but transformed into a thick bear. Otis was beaten by bear 901, a new mom and the 2022 runner up. 

On Saturday October 7, the 2022 winner bear 747 was defeated by Grazer, who went on to beat 901, Holly, and Chunk in the Final Four. 

[Related: How scientists try to weigh some of the fattest bears on Earth.]

First launched by the National Park Service in 2014 as Fat Bear Tuesday, Fat Bear Week is an annual tournament-style bracket competition where the public votes for their favorite chubby bear. Its goal is to celebrate the Brooks River brown bears at Katmai in southern Alaska and its remarkable ecosystem. It was expanded Fat Bear Week in 2015, following the first year’s success. In 2022, over one million votes were cast all around the world. 

At Katmai, bears are drawn to the large number of salmon readily available from late June through September. Salmon have long since been the lifeblood of the area, supporting Katmai’s people, bears and other animals. Fat bears exemplify the richness of this area, a wild region that is home to more brown bears than people along with the largest, healthiest runs of sockeye salmon left on the planet. The daily lives of the Brooks River bears can be followed via eight live-streaming cameras on explore.org from June through October. 

The winners, and all the bears, now get six months of restful solitude as winter approaches. 

The post Fierce mama Grazer takes 2023’s Fat Bear Week crown appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A mission to map the universe unveils star clusters, asteroids, and tricks of gravity https://www.popsci.com/science/gaia-esa-data-release-3/ Tue, 10 Oct 2023 20:00:00 +0000 https://www.popsci.com/?p=578342
This image shows many looping and overlapping orbits encircling the Sun, all of different colors (to differentiate between asteroids). The center of the image – representing an area within the orbit of Jupiter – is very densely packed with orbits, while the outer edges remain clearer, showing the background plane of the Milky Way.
One of the new papers from the ESA’s Gaia mission reveals more about 156,823 asteroids. This image shows many looping and overlapping orbits encircling the Sun, all of different colors (to differentiate between asteroids). The center of the image – representing an area within the orbit of Jupiter – is very densely packed with orbits, while the outer edges remain clearer, showing the background plane of the Milky Way. ESA/Gaia/DPAC

The ESA's Gaia star surveyor marks its 10th birthday this December.

The post A mission to map the universe unveils star clusters, asteroids, and tricks of gravity appeared first on Popular Science.

]]>
This image shows many looping and overlapping orbits encircling the Sun, all of different colors (to differentiate between asteroids). The center of the image – representing an area within the orbit of Jupiter – is very densely packed with orbits, while the outer edges remain clearer, showing the background plane of the Milky Way.
One of the new papers from the ESA’s Gaia mission reveals more about 156,823 asteroids. This image shows many looping and overlapping orbits encircling the Sun, all of different colors (to differentiate between asteroids). The center of the image – representing an area within the orbit of Jupiter – is very densely packed with orbits, while the outer edges remain clearer, showing the background plane of the Milky Way. ESA/Gaia/DPAC

On October 10, the European Space Agency (ESA) published some interim data from its nearly a decade-long Gaia mission. The data includes half a million new and faint stars in a massive cluster, over 380 possible cosmic lenses, and the position of over 150,000 asteroids within the solar system. 

[Related: See the stars from the Milky Way mapped as a dazzling rainbow.]

Launched in December 2013, Gaia is an astronomical observatory spacecraft with a mission to generate an accurate stellar census, thus mapping our galaxy and beyond. A more detailed picture of Earth’s place in the universe could help us better understand the diverse objects that make up the known universe. 

500,000 new stars and cluster cores

In 2022, Gaia’s third data release (DR3) contained data on over 1.8 billion stars, which built a rather complete view of the Milky Way and beyond. Even with all that data, there were still gaps in the ESA’s mapping. Gaia still hadn’t fully explored areas of the sky that were particularly densely packed with stars, overlooking the stars that shine a little less brightly than their neighbors. 

A key example of this is in globular clusters. These are some of the oldest objects in the known universe and are especially valuable for looking back into our cosmic past. However, their bright cores can sometimes overwhelm telescopes trying to get a clear view. 

Gaia selected Omega Centauri to help fill in the gaps in the stellar map. Omega Centauri is the largest globular cluster that can be seen from Earth and is a good example of one of the galaxy’s more ‘typical’ clusters. Gaia enabled a special mode to truly map a wider patch of sky that is surrounding the cluster’s core whenever the cluster came into view.

“In Omega Centauri, we discovered over half a million new stars Gaia hadn’t seen before – from just one cluster!” study co-author and astrophysicist from the Leibniz-Institute for Astrophysics Potsdam (AIP) Katja Weingrill said in a statement. “We didn’t expect to ever use it for science, which makes this result even more exciting.”

The data also allowed the team to detect new stars that are too close together to be properly measured.

“With the new data we can study the cluster’s structure, how the constituent stars are distributed, how they’re moving, and more, creating a complete large-scale map of Omega Centauri. It’s using Gaia to its full potential—we’ve deployed this amazing cosmic tool at maximum power,” study co-author and AIP astrophysicist Alexey Mints said in a statement

The half million new stars showed that Omega Centauri is one of the most crowded regions that Gaia has explored so far. 

Currently, Gaia is exploring eight more regions using these same techniques. The scoop from those exploration will be included in Gaia Data Release 4. It should help astronomers truly understand what is happening within these cosmic building blocks and more accurately confirm the age of our galaxy.

Spotting gravitational lenses 

Gravitational lensing happens when the image of a faraway object in space becomes warped by a disturbing mass, such as a galaxy or star, sitting between the observer and the object. The mass in the middle acts like a giant lens that can magnify the brightness of light and cast multiple images of the faraway source onto the sky. 

[Related: Gravitational Lens Splits Supernova’s Light 4 Different Ways.]

“Gaia is a real lens-seeker,” study co-author and Laboratoire d’Astrophysique de Bordeaux astrophysicist Christine Ducourant  said in a statement. “Thanks to Gaia, we’ve found that some of the objects we see aren’t simply stars, even though they look like them.”

Some of the objects here are not ordinary stars, but distant quasars. These quasars are extremely bright, high-energy galaxies powered by black holes. To date, Gaia has found 381 candidates for lensed quasars. This is a “goldmine” for cosmologists, says Ducourant , and the largest set of candidates ever detected at once. 

Detecting lensed quasars is challenging, since a lensed system’s constituent images can clump together on the sky in misleading ways.

“The great thing about Gaia is that it looks everywhere, so we can find lenses without needing to know where to look,” study co-author and Université Côte d’Azur astrophysicist Laurent Galluccio said in a statement. “With this data release, Gaia is the first mission to achieve an all-sky survey of gravitational lenses at high resolution.”

Asteroids and The Milky Way

One of the studies in this data release reveals more about 156,823 asteroids, pinpointing their positions over nearly double the previous timespan. In the fourth Gaia data release, the team plans to complete the set and include comets, planetary satellites, and double the number of asteroids.

[Related: Smashed asteroid surrounded by a ‘cloud’ of boulders.]

Another study maps the disc of the Milky Way by tracing the weak signals seen in starlight, faint imprints of the gas and dust that floats between the stars. The Gaia team stacked six million spectra to study these signals and the data will hopefully allow scientists to finally narrow down the source of these signals.

“This data release further demonstrates Gaia’s broad and fundamental value—even on topics it wasn’t initially designed to address,” study co-author and ESA Project Scientist Timo Prusti said in a statement. “Although its key focus is as a star surveyor, Gaia is exploring everything from the rocky bodies of the solar system to multiply imaged quasars lying billions of light-years away, far beyond the edges of the Milky Way. The mission is providing a truly unique insight into the Universe and the objects within it, and we’re really making the most of its broad, all-sky perspective on the skies around us.”

The post A mission to map the universe unveils star clusters, asteroids, and tricks of gravity appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Sensitive to pain? It could be your Neanderthal gene variants. https://www.popsci.com/science/neanderthal-genetics-pain-sensitivity/ Tue, 10 Oct 2023 17:00:00 +0000 https://www.popsci.com/?p=578280
Human hand bones during an archaeological dig.
Scientists are still not sure if carrying these ancient genetic variants and greater sensitivity to pain was an evolutionary advantage. Deposit Photos

Studying them could lead to a greater understanding of chronic pain.

The post Sensitive to pain? It could be your Neanderthal gene variants. appeared first on Popular Science.

]]>
Human hand bones during an archaeological dig.
Scientists are still not sure if carrying these ancient genetic variants and greater sensitivity to pain was an evolutionary advantage. Deposit Photos

In the years since the Neanderthal genome was first sequenced, geneticists have been peering into the past to look for traces of this extinct group of humans within our genes. The presence of these ancient genes could make carriers more at risk for severe COVID-19, influence nose shape, and even make some people more sensitive to pain

[Related: Neanderthal genomes reveal family bonds from 54,000 years ago.]

A new study published October 10 in the journal Communications Biology found that those carrying three Neanderthal gene variants are actually more sensitive to pain from skin pricking after prior exposure to mustard oil. In this case, mustard oil acts as an agonist, or a substance that initiates a physiological response. Adding it to the skin causes a quick response by neurons called nociceptors that create a sense of pain. 

SCN9A is a key gene in the perception of pain that is located on chromosome 2. It is highly expressed nociceptors that are activated when a sharp point or something hot is applied to the body. The neurons encode proteins within the body’s sodium channel and alert the brain which leads to the perception of pain. Earlier research found three variations in the SCN9A gene–M932L, V991L, and D1908G–in sequenced Neanderthal genomes and reports of greater sensitivity to pain among the living humans who have all three of these variants. 

“It has been shown in previous studies that some rare mutations in this gene that stop the channel from working can cause insensitivity to pain,” study co-author and University of Oxford neuroscientist David Bennett tells PopSci. “We were, however, interested in these other mutations, which were shown to have an opposite effect of enhancing the activity of this channel, thus leading their carriers to be somewhat more sensitive than non-carriers.”

According to Andrés Ruiz-Linares, study co-author and University College London human geneticist, earlier studies show that the mutations are quite rare in the British populations, but they are very frequent in Latin American populations. 

“We thus realized that we had, in our hands, the perfect dataset to not only replicate their study but also go further and identify the pain modality that was at work here,” Ruiz-Linares tells PopSci

In the study, the team measured the pain thresholds of 1,963 individuals from Colombia in response to a range of stimuli. The D1908G variant was present in roughly 20 percent of chromosomes within this population. About 30 percent of chromosomes carrying this variant also carried the M932L and V991L variants. All three variants were associated with a lower pain threshold in response to skin pricking after the skin was exposed to mustard oil, but not in response to pressure or heat. Additionally, carrying all three of these variants was associated with greater pain sensitivity than carrying only one of them. 

[Related: Neanderthals were likely creating art 57,000 years ago.]

The team then analyzed the genomic region that houses SCN9A using genetic data from 5,971 individuals from Peru, Chile, Brazil, Colombia, and Mexico. They found that the three Neanderthal variants were more common in regions where the population had a higher proportion of Native American ancestry, such as the Peruvian population.

“They [the mutations] have a rather wide range in these countries, from 2 to 42 percent,” study co-author and University College London statistical geneticist Kaustubh Adhikari tells PopSci. “Up to 18 percent of their populations could carry two copies of the mutation. These are, however, gross estimations. We also know, from the previous study, that these mutations are pretty rare in European populations.”

The team believes that the Neanderthal variants may sensitize the sensory neurons by changing the threshold at which a nerve impulse is generated. The variants could also be more common in populations with higher proportions of Native American ancestry due to random chance as well as population bottlenecks that occurred during when the Americas were first colonized by Europeans

“Although Neanderthal intermixing with Europeans is now well-known in popular culture, their genetic contribution to other human groups, such as Native Americans in this case, is less talked about,” study co-author and population geneticist at the National Research Institute for Agriculture, Food and the Environment in France Pierre Faux tells PopSci. “In this study, we saw how important and relevant it is to study genetic backgrounds that are under-represented in medical cohorts.”

Since acute pain can play a role in moderating behavior and preventing further injury, the team is planning additional research to determine if carrying these variants and having greater sensitivity to pain was advantageous during human evolution. Understanding how these variants work could also help physicians understand and treat chronic pain.

“Genes are just one of many factors, including environment, past experience, and psychological factors, which influence pain,” says Bennet. 

The post Sensitive to pain? It could be your Neanderthal gene variants. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
New neon-yellow snail from the Florida Keys gets a happy hour-ready name https://www.popsci.com/environment/margarita-snail/ Tue, 10 Oct 2023 14:00:00 +0000 https://www.popsci.com/?p=578159
An underwater closeup of Cayo margarita (a new species) in the coral reef of the Florida Keys. Note the two long tentacles, used by the snail to spread the mucus net for feeding.
An underwater closeup of Cayo margarita (a new species) in the coral reef of the Florida Keys. Note the two long tentacles, used by the snail to spread the mucus net for feeding. Rüdiger Bieler

Wastin’ away again with a margarita snail.

The post New neon-yellow snail from the Florida Keys gets a happy hour-ready name appeared first on Popular Science.

]]>
An underwater closeup of Cayo margarita (a new species) in the coral reef of the Florida Keys. Note the two long tentacles, used by the snail to spread the mucus net for feeding.
An underwater closeup of Cayo margarita (a new species) in the coral reef of the Florida Keys. Note the two long tentacles, used by the snail to spread the mucus net for feeding. Rüdiger Bieler

A new marine snail that would make the late great Jimmy Buffet proud has been discovered in the Florida Keys. The lemon-colored snail is named Cayo margarita after the Spanish word for “small, low island” and the tropical drink Buffet sings about in one of his biggest hits. The new and real resident of the fictional Margaritaville is described in a study published October 9 in the journal PeerJ.

[Related: This cone snail’s deadly venom could hold the key to better pain meds.]

Marine smells are distantly related to the land-dwelling gastropods in gardens around the world. The margarita snails come from a group nicknamed worm snails, since they spend many of their lives living in one place. Worm snails also do not have a protective covering found in other snails called an operculum. This body part allows the snails to retreat further inside their shell and keep their bodies moist.

“Worm snails are just so different from pretty much any other regular snail,” study co-author Rüdiger Bieler tells PopSci. “These guys are sitting in the middle of the coral reef where everybody is out trying to eat them. And they’ve given up that protection and just advertise with their bright colors.”

Bieler is a marine biologist and curator of invertebrates at the Field Museum in Chicago who has spent 40 years studying the Western Atlantic’s invertebrates. Even after decades studying the region, these worm snails were hiding in plain sight during dive trips, largely because these snails are kind of the ultimate introverts.

Look closely. A margarita snail in the middle of a dead section of a large brain coral. CREDIT: R. Bieler.
Look closely. A margarita snail in the middle of a dead section of a large brain coral. CREDIT: R. Bieler.

Once juvenile worm snails find a spot to hunker down and they cement their shell to a hard surface never really move again. “Their shell continues to grow as an irregular tube around the snail’s body, and the animal hunts by laying out a mucus web to trap plankton and bits of detritus,” Bieler explains

Bieler and the rest of the international team of researchers came across the lemon-yellow snails in the Florida Keys National Marine Sanctuary and a similar lime-colored snail in Belize. Within the same species of snails, it is possible to get many different colors. There can also be color variations in a single population or even cluster of snails. Bieler believes that they may do this to confuse some of the coral reef fish that can see color so that they do not have a clear target. Some may use their hue as a warning color.  

The team initially believed that the lime-green and lemon-yellow snails were different species, but DNA sequencing revealed just how unique they are. This new yellow species belongs to the same family of marine snails as the invasive snail nicknamed the “Spider-Man” snail. This same team found these snails in 2017 on the Vandenberg shipwreck off the Florida Keys.

[Related: Invasive snails are chomping through Florida, and no one can stop them.]

The snails in this new Cayo genus also share a key trait in common with another worm snail genus called Thylacodes. The species Thylacodes bermudensis is found near Bermuda, and while only distantly related to their Floridaian and Belizean cousins, they have small colored heads and mucus that pop out of tubular shells. This might work as a deterrent to keep corals, anemones, and other reef fish from getting too close. The mucus has some nasty metabolites in it which might explain why these snails risk exposing their heads. 

The study and the new snails described in it help illuminate the stunning biodiversity of the world’s coral reefs, which are under serious threat due to climate change and the record warm ocean temperatures this summer

“These little snails are kind of beacons for biodiversity that need to be protected because many of them are dying out before we even get a chance to study them,” says Biler. 

It is also an important lesson in always looking right under your nose for discovery.

“I’ve been doing this for decades. We still find new species and previously unknown morphologies right under our feet,” says Biler. “This [discovery] was at snorkeling depth and in one of the most heavily touristed areas in the United States. When you look closely, there are still new things.”

The post New neon-yellow snail from the Florida Keys gets a happy hour-ready name appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
4 capybara facts you’ll love, and 1 you’d like to forget https://www.popsci.com/environment/capybara-facts/ Mon, 09 Oct 2023 22:00:00 +0000 https://www.popsci.com/?p=577276
A capybara standing on a riverbank. Capybaras are semi-aquatic rodents that can weigh up to 174 pounds.
Capybaras are semi-aquatic rodents that can weigh up to 174 pounds. Deposit Photos

It's the cabybara's world, we're just living in it.

The post 4 capybara facts you’ll love, and 1 you’d like to forget appeared first on Popular Science.

]]>
A capybara standing on a riverbank. Capybaras are semi-aquatic rodents that can weigh up to 174 pounds.
Capybaras are semi-aquatic rodents that can weigh up to 174 pounds. Deposit Photos

The internet has recently fallen in love with South America’s charismatic rodents called Capybaras. From catchy songs to memes, it’s hard not to see the chunky charmers in your feed these days. Here are some fun facts about these captivating creatures to inform your scrolling.

[Related: Capybara spent a month on the lam after escape from Toronto Zoo.]

Where can I see a capybara in the wild?

Capybaras are the largest rodent in the world can be found east of the Andes Mountains and the riverbanks in Central and South America from Panama to Argentina. Since they are semi-aquatic like beavers and hippos, capybaras typically live beside ponds, swamps, marshes, or wherever standing water is available. They are also called “water hogs” or “capys” and can even stay under water for more than five minutes to escape from predators like anacondas and jaguars. 

They have been known to encroach further into human territory as their habitat is dwindling. Since 2020, hundreds of capybaras have taken over Nordelta, a private and gated neighborhood outside of Buenos Aires. The rodents had always been around, but remained hidden. The lockdowns triggered by the COVID-19 pandemic enabled the furry capys to spread and flourish in the posh neighborhood’s parks. 

Multiple zoos in the United States, including the Cincinnati Zoo and Botanical Garden (also home to some famous hippos), Southwick’s Zoo in Massachusetts, and the Cape May County Park and Zoo in New Jersey, are home to a handful of adorable specimens as well. 

CREDIT: Cincinnati Zoo and Botanical Garden.

Do capybaras really eat their own poop?

Yes, among other things. They eat their poop for beneficial bacteria that helps their stomach break down the thick fiber from their other food sources such as reeds and grains, according to the San Diego Zoo

Like other rodents, capybaras have ever-growing front teeth. They use their sharp and long chompers to graze on grass and water plants. When fresh grasses and water plants dry up during the dry season, they eat squashes, melons, reeds, and grains. An adult can eat about six to eight pounds of grasses per day. 

How big are capys?

There are two known species of capybara: Hydrochoerus hydrochaeris and Hydrochoerus isthmius.  Of the two, H.hydrochaeris is the largest living rodent in the world. It can grow up to 4.3 feet long and weigh a whopping 174 pounds. H. isthmius is a bit smaller. It can grow to about 3 feet long and weigh closer to 62 pounds.

[Related: These prehistoric rodents were social butterflies.]

Can I own a capybara as a pet in the United States?

It depends what state you call home. They are currently legal with restrictions in some states including Texas, Pennsylvania, Nevada, Arizona, and Georgia. California and New York have more stringent rules, including that the animals can only be obtained by those with an approved scientific or educational reason. While ownership may be legal at the state, it may be illegal at the city level. 

Yahoo Finance estimates that the initial cost to buy a capy on the exotic animal market is about $1,000 per animal, while other estimates place the cost at $8,000. Vet bills can easily stretch between $600 to $1,000 each year?? and owners need to keep in mind the six to eight pounds of food that they can eat per day. Capybaras are also social animals, so owners need to be prepared to take in more than one for their pet to thrive. 

What are capys all over my feed?

Basically, capybaras are kind of the new Baby Shark. The song Capybara from Russian artist Сто-Личный Она-Нас went viral on TikTok earlier this year. Listen at your own risk, as it is a textbook earworm that will be stuck in your head for days.

Popular videos include a capybara sparring with a platypus and jumping into above ground pools. They are also the stars of pop culture memes, including one celebrating the billion dollar hit movie Barbie. 

A meme that reads "this Barbie is pulling up," with a photo of a capybara and the Barbie logo.
CREDIT: Capyverse via Instragram

They are also known for being some of the friendliest critters in the animal kingdom. They are very social and live together in herds of 10 to 20 animals. They spend time together cuddling, playing, socializing, and grooming one another. They have even been known to try to use alligators to hitch a ride

It also doesn’t hurt that they are really cute. In an era of doom scrolling, sometimes it’s just nice to look at their hippo-like eyes and ears as they look above the water. 

The post 4 capybara facts you’ll love, and 1 you’d like to forget appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Meet the 2023 Nobel Prize winners https://www.popsci.com/science/nobel-prize-winners-2023/ Mon, 09 Oct 2023 11:15:00 +0000 https://www.popsci.com/?p=577504
A dove is released at noon from a window of the Nobel Peace Center following the announcement of the laureates of the 2023 Nobel Peace Prize at the Norwegian Nobel Institute in Oslo on October 6, 2023. The Nobel Peace Prize was on October 6 awarded to imprisoned rights campaigner Narges Mohammadi, honored for her fight against the oppression of women in Iran.
A dove is released at noon from a window of the Nobel Peace Center following the announcement of the laureates of the 2023 Nobel Peace Prize at the Norwegian Nobel Institute in Oslo on October 6, 2023. The Nobel Peace Prize was on October 6 awarded to imprisoned rights campaigner Narges Mohammadi, honored for her fight against the oppression of women in Iran. Frederik Ringnes/NTB/AFP/Getty Images

This year’s Nobel laureates include the scientists behind mRNA vaccine technology and quantum dots, along with an Iranian human rights activist.

The post Meet the 2023 Nobel Prize winners appeared first on Popular Science.

]]>
A dove is released at noon from a window of the Nobel Peace Center following the announcement of the laureates of the 2023 Nobel Peace Prize at the Norwegian Nobel Institute in Oslo on October 6, 2023. The Nobel Peace Prize was on October 6 awarded to imprisoned rights campaigner Narges Mohammadi, honored for her fight against the oppression of women in Iran.
A dove is released at noon from a window of the Nobel Peace Center following the announcement of the laureates of the 2023 Nobel Peace Prize at the Norwegian Nobel Institute in Oslo on October 6, 2023. The Nobel Peace Prize was on October 6 awarded to imprisoned rights campaigner Narges Mohammadi, honored for her fight against the oppression of women in Iran. Frederik Ringnes/NTB/AFP/Getty Images

After an uncharacteristic leak last week, all of this year’s Nobel laureates have officially been announced by the prize committees. Their contributions to science and the humanities range from lifesaving vaccinations to plays and novels that explore the human condition to fighting for human rights in Iran. 

[Related: All-knowing toilets and taste-testing rocks amongst 2023 Ig Nobel winners.]

Physiology or medicine

The 2023 Nobel prize in medicine was awarded to Katalin Karikó and Drew Weissman, two of the scientists whose work helped pave the way for mRNA vaccines against COVID-19 that have saved countless lives.

“Through their groundbreaking findings, which have fundamentally changed our understanding of how mRNA interacts with our immune system, the laureates contributed to the unprecedented rate of vaccine development during one of the greatest threats to human health in modern times,” the panel wrote in a press release

Messenger RNA (mRNA) in vaccines use a snippet of genetic code that brings instructions for making proteins. If the right virus protein is selected for the vaccine, then the body produces its own defenses against the virus. One of the major advantages of mRNA vaccines is that these vaccines can be made in extremely large quantities since their main components are made in laboratories.

Physics 

Pierre Agostini, Ferenc Krausz, and Anne L’Huillier will jointly share the prestigious Nobel prize in physics. The trio was awarded for their work probing the world of electrons. 

“Their experiments, which have given humanity new tools for exploring the world of electrons inside atoms and molecules,” the Nobel committee wrote on Tuesday. “Pierre Agostini, Ferenc Krausz and Anne L’Huillier have demonstrated a way to create extremely short pulses of light that can be used to measure the rapid processes in which electrons move or change energy.”

When perceived by humans, fast-moving events flow into each other similar to the way a flip book of still images can be perceived as continual movement. In the world of electrons, these changes occur in an attosecond, or only a millionth of a trillionth of a second. An attosecond is so short that there are as many attoseconds in one second as there have been seconds since the birth of the universe roughly 13.8 billion years ago

Electrons’ movements in atoms and molecules are measured in these attoseconds. Agostini, Krausz, and L’Huillier have conducted experiments that demonstrate how attosecond pulses could actually be observed and measured, according to the awarding committee.

[Related: mRNA vaccine innovators win the Nobel Prize in medicine.]

Chemistry 

The chemistry prize was jointly awarded to Moungi Bawendi, Louis Brus, and Alexei Ekimov for the discovery and developments of quantum dots. These nanoparticles are so small that their size determines their properties. Quantum dots can now be found in computer monitors and television screens and even help biochemists and surgeons map tissues and remove tumors

“For a long time, nobody thought you could ever actually make such small particles,” Johan Åqvist, chair of the Nobel Committee for Chemistry, said during a news conference. “But this year’s laureates succeeded.”

Quantum dots are among the smallest components of nanotechnology. Typically, an element’s properties are governed by how many electrons it has. When that matter shrinks down  to nano-dimensions quantum phenomena arise. This means the element’s properties are now governed by the size of the matter instead of the number of electrons it has. 

Ekimov created size-dependent quantum effects in colored glass and demonstrated that the particle size affected the color of the glass via quantum effects. Later, Brus became the first scientist in the world to prove that size-dependent quantum effects in particles were floating freely in a fluid. In 1993, Bawendi revolutionized the chemical production of quantum dots. His techniques resulted in almost perfect particles, which was necessary for using the quantum dots in a wide range of applications. 

Literature 

Norwegian author Jon Fosse was awarded the literature prize, “for his innovative plays and prose which give voice to the unsayable,” according to the prize committee. Fosse has written about 40 plays, in addition to numerous short stories, novels, children’s books, essays, and poetry. His 2021 work A New Name: Septology VI-VII has been described as Fosse’s “magnum opus” and was a finalist for the International Booker Prize in 2022.

In a 2022 interview with the Los Angeles Review of Books, Fosse said, “When I manage to write well, there is a second, silent language. This silent language says what it is all about. It’s not the story, but you can hear something behind it — a silent voice speaking.”

Fosse’s cultural significance in Norway is so huge that there is even a hotel suite named after him in Oslo

[Related: Rosalind Franklin missed out on a Nobel, but now she’ll help look for life on Mars.]

Peace

The Norwegian Nobel Committee awarded the 2023 Peace Prize to jailed Iranian activist Narges Mohammadi,  “for her fight against the oppression of women in Iran and her fight to promote human rights and freedom for all.” 

Mohammadi is the deputy head of the Defenders of Human Rights Center, a non-governmental organization led by 2003 Nobel Peace Prize laureate Shirin Ebadi.

In September 2022 a young Kurdish woman named Mahsa Jina Amini was killed under custody of the Iranian morality police. Her death sparked the largest political demonstration against Iran’s theocracy since it came into power in 1979. Thousands of Iranains took to the streets in peaceful protests under the slogan Woman – Life – Freedom. At least 20,000 protestors were jailed, thousands were injured, and 500 demonstrators were killed when the regime cracked down on the protests.

The committee said that the Woman – Life – Freedom motto suitably expresses the dedication and work of Narges Mohammadi. She is serving multiple sentences in Evin Prison in Tehran, amounting to roughly 12 years behind bars. 

Economics

The Nobel Memorial Prize in Economic Sciences was awarded to Harvard professor Claudia Goldin for providing the first comprehensive account of “women’s earnings and labour market participation through the centuries,” which includes intensive research of on the gender pay gap.

Goldin is the third woman to ever receive the Nobel Prize in Economics, and the first one to win the award solo.

“Understanding women’s role in the labour is important for society. Thanks to Claudia Goldin’s groundbreaking research we now know much more about the underlying factors and which barriers may need to be addressed in the future,” said Jakob Svensson, Chair of the Committee for the Prize in Economic Sciences, in a release.

The physics, chemistry, physiology or medicine, economics sciences, and literature prizes will be awarded in Stockholm, Sweden on December 10. The peace prize will be awarded on the same day, but  in Oslo, Norway. December 10 is the 127th anniversary of Alfred Nobel’s death.

The post Meet the 2023 Nobel Prize winners appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A newly discovered sauropod dinosaur left behind some epic footprints https://www.popsci.com/science/garumbatitan-morellensis-dinosaur/ Fri, 06 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=577496
Evolution photo

Garumbatitan morellensis' vertebrae alone were nearly 3 feet wide.

The post A newly discovered sauropod dinosaur left behind some epic footprints appeared first on Popular Science.

]]>
Evolution photo

Meet Garumbatitan morellensis, a new species of large sauropod dinosaur. The Giganotosaurus relative called the present-day Iberian Peninsula home about 122 million years ago. The remains of this titan were discovered in Morella, Spain, and this discovery could help fill in some major evolutionary gaps. The findings were described in a study published September 28 in the journal Zoological Journal of the Linnean Society.

[Related: Cushy feet supported sauropods’ gigantic bodies.]

G. morellensis belongs to the sauropod group of dinosaurs, which includes some well-known favorites like Diplodocus and Brachiosaurus. Sauropods were four-legged Early Jurassic and Cretaceous Era dinos known for their long necks that could reach up to 49 feet long in some species and lengthy tails. G. morellensis is also a member of a subgroup of sauropods known as titanosaurs. These giants were the largest of an already big group and titanosaurs survived right up until the asteroid that wiped out the dinosaurs struck about 66 million years ago.

This new dinosaur’s remains were found and excavated in the Sant Antoni de la Vespa fossil-site in 2005 and 2008. This fossil deposit is home to one of the largest concentrations of sauropod dinosaur remains that date back to the Lower Cretaceous period in Europe (about 145 million to 66 million years ago). Scientists found the remains of a giant unidentified sauropod in Portugal in 2022 that could be Europe’s oldest known dinosaur fossil at 150 million-years-old. 

The team of paleontologists from Portugal and Spain found the remains of three G. morellensis individuals and one other sauropod. Their lucky find included a rare set of footprints. They also uncovered giant vertebrae, leg bones, and two near-complete sets of foot bones. 

An artist’s reconstruction of the life appearance of Garumbatitan morellensis. The dinosaur is green with a very long neck and tail, and stands near a waterhole.
An artist’s reconstruction of the life appearance of Garumbatitan morellensis. Grup Guix

“One of the individuals we found stands out for its large size, with vertebrae more than one meter wide [3.2 feet], and a femur that could reach two meters [6.5 feet] in length. We found two almost complete and articulated feet in this deposit, which is particularly rare in the geological record,” study co-author and University of Lisbon paleontologist Pedro Mocho said in a statement

G. morellensis was probably close to an average-size titanosaur and could have been near 94 feet long. Its leg shape and foot bones suggest that it was one of the more primitive sauropods from a subgroup called Somphospondyli, according to the authors. Somphospondylan fossils have been found on every present-day continent, but paleontologists are not sure where they originated. This discovery of such an early specimen in Spain points to Europe as a possible origin point for this subgroup, but more evidence is needed.  

[Related: Europe’s largest dinosaur skeleton may have been hiding in a Portuguese backyard.]

This discovery also highlights how complex the evolutionary history of sauropods in the Iberian Peninsula and the rest of Europe is. Species related to these lineages have been found in Asia, North America, and possibly Africa. This points to a potentially long period of dinosaur dispersal within continents and this fossil deposit might fill in some major gaps of evolutionary history. 

“The future restoration of all fossil materials found in this deposit will add important information to understand the initial evolution of this group of sauropods that dominated dinosaur faunas during the last million years of the Mesozoic era,” study co-author and Universidad Nacional de Educación a Distancia in Madrid paleontologist Francisco Ortega said in a statement.

The post A newly discovered sauropod dinosaur left behind some epic footprints appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
USDA bans French poultry imports over avian influenza vaccine https://www.popsci.com/health/usda-france-avian-influenza-vaccine/ Fri, 06 Oct 2023 13:00:00 +0000 https://www.popsci.com/?p=577489
A pair of chickens at a poultry farm. Bird flu has been detected in at least 67 countries.
Bird flu has been detected in at least 67 countries. Deposit Photos

The ban comes after France begins Europe’s only mass-vaccination campaign against bird flu.

The post USDA bans French poultry imports over avian influenza vaccine appeared first on Popular Science.

]]>
A pair of chickens at a poultry farm. Bird flu has been detected in at least 67 countries.
Bird flu has been detected in at least 67 countries. Deposit Photos

The threat of avian influenza (H5N1) continues to be a serious health and economic issue. As of September, almost 60 million birds have been affected in the United States since the latest outbreak began in January 2022. There are currently 839 known H5N1 outbreaks around the world.

[Related: Thriving baby California condor is a ray of hope for the unique species.]

Earlier this month, France began Europe’s only mass-vaccination campaign against avian influenza. The country plans to vaccinate roughly 64 million ducks at 2,700 farms over the next year as an effort to end mass culls. Drastic actions like the culls cost the poultry industry millions of dollars every year. 

“Vaccination should mean we only face individual cases, avoiding the tidal waves sweeping through farms,” poultry chief at the SNGTV farm vets’ association Jocelyn Marguerie told DW News

To reduce the risk of more Highly Pathogenic Avian Influenza (HPAI) spreading in the US, the Department of Agriculture’s Animal and Plant Health Inspection Service has barred poultry imports from France and its European Union trading partners including Iceland, Switzerland, Liechtenstein, and Norway. The ban covers live ducks, duck eggs, and unmitigated/untreated duck products in addition to poultry products and is due to their recent vaccination campaign. 

According to a press release, the agency is concerned that the vaccines may mask that the virus is already circulating in poultry, as the vaccinated birds may not show any signs of infection and could lead to the contaminated animals being brought into the US. 

In France, the vaccine will be given in two doses and is obligatory for ducklings as young as 10 days old being raised on farms that have more than 250 birds. It will cost close to 100 million euros ($105 million) and 85 percent of the cost will reportedly be financed by the French government.

“Typically, animal vaccines in the US take approximately 3 years to develop and get FDA approval. Even though vaccination reduces mortality significantly, there is still concern that vaccinated birds can become infected and shed the virus,” Michelle Hawkins, an ABVP certified veterinarian at the University of California, Davis and the director of the California Raptor Center tells PopSci. “This is the main concern regarding France authorizing a vaccine. Ducks often carry avian influenza viruses without showing any clinical signs when infected.”

Hawkins also cited a concern about how quickly HPAI can mutate which could potentially reduce the vaccine’s efficacy.

[Related: One way to fight off bird flu: extra-CRISPRed chicken.]

Recently, commercial flocks have been culled in South Africa to stop the spread and the virus which has been detected in at least 67 countries. It has also been found in domestic cats in Poland and has even jumped from wild birds into seals on the East and West Coasts of the US. 

While vaccination is not enough to completely stop the disease yet, the jabs are a tool in fighting it. The Department of Agriculture began evaluating four HPAI vaccine candidates for animals and began some trials in April 2023. Other countries including Egypt, China, Mexico, and Vietnam have been vaccinating flocks for years. 

Currently, the risk of avian flu to humans is low, with only one reported human case of this virus in the US. There are trials underway of vaccines for humans if the virus mutates to become more of a threat to people. Researchers in the United Kingdom have also isolated a gene called BTN3A3 that could keep the virus from infecting humans. 

In the meantime, vigilance from bird owners and other protective measures including avoiding contact with wild birds and reporting dead birds to the proper authorities remain crucial. 

“It is critical that bird owners look at what they can do immediately to protect their flocks– now,” says Hawkins. 

The post USDA bans French poultry imports over avian influenza vaccine appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Humans are now the African savannah’s top predator https://www.popsci.com/environment/african-savannah-lion-human-predator/ Thu, 05 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=577199
A lioness bears her teeth. Mammals in a new study were twice as likely to abandon a waterhole when hearing human voices than the sounds of a lion.
Mammals in a new study were twice as likely to abandon a waterhole when hearing human voices than the sounds of a lion. Deposit Photos

Giraffes, leopards, elephants, and rhinoceroses all were more scared of human voices than lion roars.

The post Humans are now the African savannah’s top predator appeared first on Popular Science.

]]>
A lioness bears her teeth. Mammals in a new study were twice as likely to abandon a waterhole when hearing human voices than the sounds of a lion.
Mammals in a new study were twice as likely to abandon a waterhole when hearing human voices than the sounds of a lion. Deposit Photos

Lions are often incorrectly called the “king of the jungle,” and not just because most live in plains and grasslands or because lionesses do most of the hunting. These days, the giant cats are not feared as much as another “super predator”—the animals living in an ecological park in South Africa now fear humans more than lions, according to a study published October 5 in the journal Current Biology. Roughly 95 percent of the mammals living among lions are more afraid of human voices than the big cats or hunting sounds. 

[Related: The rare case of a lioness with a mane.]

The study focused on Greater Kruger National Park in South Africa. It’s a protected area of about 1,328 square miles and is home to one of the world’s largest remaining roaming lion populations. African lions have been considered endangered since 2015, but lions are still among the biggest group-hunting land predators on Earth. However, humans are battling their supremacy, as multiple studies have shown that humans kill prey at higher rates than lions do. This new research compares the fear animals have of humans versus lions to see which species causes more fear.

In the study, a team of biologists observed how 19 mammal species reacted to a series of recordings. The sounds included human voices, lion vocalizations to signal the presence of a top non-human predator, and barking dogs and gunshots associated with hunting. The clips of human voices were played at a more conversational volume, came from radio or TV recordings, and included four of the most commonly used languages in the region (Tsonga, Northern Sotho, English, and Afrikaans). 

“The key thing is that the lion vocalizations are of them snarling and growling, in ‘conversation’ as it were, not roaring at each other,” Western University conservation biologist Michael Clinchy said in a statement. “That way the lion vocalizations are directly comparable to those of the humans speaking conversationally.”

The team used a waterproof camera system that had enough battery life to record day and night over the course of several months and captured 15,000 videos. The observations were also taken during the dry season and the team put the systems at waterholes to get recordings of all the animals coming by to drink. 

Giraffe, leopard, hyena, zebra, kudu, warthog, and impala running in response to hearing humans. CREDIT:Liana Zanette/Western University.

“One night, the lion recording made this elephant so angry that it charged and just smashed the whole thing,” study co- author and Western University conservation biologist Liana Y. Zanette said in a statement

When the animals heard human sounds, they were twice as likely to run and ditch the waterhole than they were when lions or hunting noises were played. About 95 percent of species, including giraffes, leopards, hyenas, warthog, impala, elephants, and rhinoceroses, ran more often or abandoned waterholes more quickly in response to human sounds than lions.  

“There’s this idea that the animals are going to habituate to humans if they’re not hunted. But we’ve shown that this isn’t the case,” said Clinchy. “The fear of humans is ingrained and pervasive, so this is something that we need to start thinking about seriously for conservation purposes.”

[Related: How a 19-year-old lion fathered 35 cubs in 18 months.]

The team is now looking into whether their sound systems could be used to steer endangered species like the Southern white rhino away from poaching areas in South Africa. Efforts to keep rhinos away from certain areas through the use of human voices have seen success in some early studies.

“I think the pervasiveness of the fear throughout the savannah mammal community is a real testament to the environmental impact that humans have,” says Zanette. “Not just through habitat loss and climate change and species extinction, which is all important stuff. But just having us out there on that landscape is enough of a danger signal that they respond really strongly. They are scared to death of humans, way more than any other predator.”

The post Humans are now the African savannah’s top predator appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Rocks may be able to release carbon dioxide as well as store it https://www.popsci.com/environment/rock-weathering-carbon-dioxide/ Thu, 05 Oct 2023 14:00:00 +0000 https://www.popsci.com/?p=577211
Exposed sedimentary rock on a mountain slope. High erosion in southern France exposes these sedimentary rocks to weathering, releasing carbon dioxide as the ancient organic carbon breaks down.
High erosion in southern France exposes these sedimentary rocks to weathering, releasing carbon dioxide as the ancient organic carbon breaks down. Robert Hilton

Sinking carbon into stone might not be as permanent as we'd hope.

The post Rocks may be able to release carbon dioxide as well as store it appeared first on Popular Science.

]]>
Exposed sedimentary rock on a mountain slope. High erosion in southern France exposes these sedimentary rocks to weathering, releasing carbon dioxide as the ancient organic carbon breaks down.
High erosion in southern France exposes these sedimentary rocks to weathering, releasing carbon dioxide as the ancient organic carbon breaks down. Robert Hilton

The natural process of rock weathering could be emitting as much carbon dioxide (CO2) into the air as the world’s volcanoes. A study published October 4 in the journal Nature finds that natural weathering can also act as a large source of greenhouse gas emissions. Understanding this natural source of the greenhouse gas could have important implications for modeling climate change scenarios.

[Related: The truth about carbon capture technology.]

The idea of storing excess carbon in rocks to combat climate change is hotly debated. While rocks can act like a carbon sink in some scenarios (and there has been some preliminary success with one Icelandic company sucking carbon dioxide out of the air and storing it in rocks) it is still not a silver bullet to our carbon woes. 

The Earth’s stones contain a large amount of carbon from the remains of animals and plants that lived millions of years ago. The geological carbon cycle also helps regulate the planet’s temperature. During chemical weathering–when chemicals in rainwater change the minerals in the rock— the stones can suck up carbon dioxide when certain minerals are attacked by the weak acid found in rainwater. Chemical weathering can help counteract the continuous carbon dioxide released by the world’s volcanoes and is part of the Earth’s natural carbon cycle. 

This new study measured an additional natural process of carbon dioxide release from rocks to the atmosphere. The newly analyzed process occurs when rocks that are formed on ancient seafloors are pushed back up to Earth’s surface. This type of event happens when mountains form. The event exposes the organic carbon from the remains of long dead organisms in the rocks to oxygen in the air and water. The carbon can then react with the oxygen and release carbon dioxide. So instead of acting like a carbon sink, weathering rocks could be a source of carbon dioxide. 

To study the weathering of organic carbon in rocks, the team used a tracer element called rhenium. Rhenium is released into water when the organic carbon in rocks reacts with oxygen. 

The team first figured out how much organic carbon is present in rocks near the surface of water and then worked out where rocks were being exposed most rapidly by erosion. 

“The challenge was then how to combine these global maps with the river data, while considering uncertainties. We fed all of our data into a supercomputer at Oxford, simulating the complex interplay of physical, chemical, and hydrological processes,” study co-author and University of Oxford geoscientists Jesse Zondervan said in a statement. “By piecing together this vast planetary jigsaw, we could finally estimate the total carbon dioxide emitted as these rocks weather and exhale their ancient carbon into the air.”

They then compared how much carbon dioxide could be drawn down by natural rock weathering of silicate materials and pinpointed many large areas where weathering was a source of carbon dioxide. These hotspots of carbon dioxide release include mountain rangers with high uplift rates, such as the eastern Himalayas, the Rocky Mountains, and the Andes. The global carbon dioxide release rate from rock organic carbon weathering was found to be 68 megatons of carbon per year, a bit more than the amount of carbon dioxide emitted during heating and cooling buildings in extreme weather in the US in 2022. 

[Related: Ancient rocks hold the story of Earth’s first breath of oxygen.]

“This is about 100 times less than present day human CO2 emissions by burning fossil fuels, but it is similar to how much CO2 is released by volcanoes around the world, meaning it is a key player in Earth’s natural carbon cycle,” study co-author and University of Oxford geochemist Robert Hilton said in a statement

The authors caution that these events could have fluctuated during the planet’s past, possibly during periods of mountain building when the influx of rocks to the surface could have released enough carbon dioxide to influence global climate. 

The team is now looking into how this natural release of carbon dioxide could increase over the coming century, as human-caused climate changes and erosion could increase a natural leak of carbon. 

“While the carbon dioxide release from rock weathering is small compared to present-day human emissions, the improved understanding of these natural fluxes will help us better predict our carbon budget,” said Zondervan.

The post Rocks may be able to release carbon dioxide as well as store it appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mammals may use same-sex sexual behavior for conflict resolution, bonding, and more https://www.popsci.com/environment/mammals-same-sex-behavior-evolution/ Wed, 04 Oct 2023 16:45:00 +0000 https://www.popsci.com/?p=577090
Two chimpanzees share a meal. A new study found that same-sex sexual behavior helps establish and maintain positive social relationships in animals including chimpanzees, bighorn sheep, lions, and wolves.
A new study found that same-sex sexual behavior helps establish and maintain positive social relationships in animals including chimpanzees, bighorn sheep, lions, and wolves. Deposit Photos

It's been observed in at least 51 species of non-human primates.

The post Mammals may use same-sex sexual behavior for conflict resolution, bonding, and more appeared first on Popular Science.

]]>
Two chimpanzees share a meal. A new study found that same-sex sexual behavior helps establish and maintain positive social relationships in animals including chimpanzees, bighorn sheep, lions, and wolves.
A new study found that same-sex sexual behavior helps establish and maintain positive social relationships in animals including chimpanzees, bighorn sheep, lions, and wolves. Deposit Photos

Over 1,500 animal species, from bonobos to sea urchins to penguins are known to engage same-sex sexual behavior. Still, scientists don’t understand exactly how it came to be or why it happens. While some say the behavior might have existed since the animal kingdom first arose more than half a billion years ago, it may have actually evolved repeatedly in mammals. A study published October 3 in the journal Nature Communications suggests that the behavior possibly plays an adaptive role in social bonding and reducing conflict, and evolved multiple times.

[Related: A massive study confirms no one ‘gay gene’ controls sexual preference.]

The behavior is particularly prevalent in nonhuman primates. It has been observed in at least 51 species from small lemurs up to bigger apes. For one population of male macaques, same-sex sexual behavior may even be a common feature of reproduction and is related to establishing dominance within groups, handling a shortage of different-sex partners, or even reducing tension following aggressive behavior. 

In this new study, the team from institutions in Spain surveyed the available scientific literature to create a database of records of same-sex sexual behavior in mammals. They traced the behavior’s evolution across mammals and tested for any evolutionary relationships with other behaviors. 

The team found that same-sex sexual behavior is widespread across mammal species, occurs in similar frequency in both males and females, and likely has multiple independent origin points. This analysis found that the behavior helps establish and maintain positive social relationships in animals including chimpanzees, bighorn sheep, lions, and wolves.

“It may contribute to establishing and maintaining positive social relationships,” study co-author José Gómez told The New York Times. “With the current data available, it seems that it has evolved multiple times.” Gómez is an evolutionary biologist at the Experimental Station of Arid Zones in Almería, Spain. 

Importantly, they caution that the study should not be used to explain the evolution of sexual orientation in humans. This research focused on same-sex sexual behavior defined as short-term courtship or mating interactions, instead of a more permanent sexual preference. 

Additionally, male same-sex sexual behavior was likely evolved in species with high rates of male adulticide–-when adult animals kill other adults. The team believes that this suggests the behavior may be an adaptation meant to mitigate the risks of violent conflict between males.

Harvard University primatologist Christine Webb, who did not participate in the study, told The Washington Post that the findings add to other research and widen the scope of what it means for a behavior to be considered adaptive.

[Related: Same-sex mounting in male macaques can help them reproduce more successfully.]

“This general question of evolutionary function—that behavior must aid in survival and reproduction—what this paper is arguing is that reaffirming social bonds, resolving conflicts, managing social tensions, to the extent that same-sex sexual behavior preserves those functions—it’s also adaptive,” Webb said. 

Webb also added that it makes sense that other animals would have sex for a variety of reasons the way that humans do.

The authors caution that these associations could also be driven by other evolutionary factors. Same-sex sexual behavior has also only been carefully studied in a minority of mammal species, so our understanding of the evolution of same-sex sexual behavior may continue to change as more mammalian species are studied.

The post Mammals may use same-sex sexual behavior for conflict resolution, bonding, and more appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How we can help the most endangered class of animals survive climate change https://www.popsci.com/environment/amphibians-climate-change-conservation/ Wed, 04 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=577023
The Morona-Santiago stubfoot toad (Atelopus halihelos) in Ecuador is listed as critically endangered.
The Morona-Santiago stubfoot toad (Atelopus halihelos) in Ecuador is listed as critically endangered. Jaime Culebras/Photo Wildlife Tours

Two out of five amphibians are currently threatened with extinction.

The post How we can help the most endangered class of animals survive climate change appeared first on Popular Science.

]]>
The Morona-Santiago stubfoot toad (Atelopus halihelos) in Ecuador is listed as critically endangered.
The Morona-Santiago stubfoot toad (Atelopus halihelos) in Ecuador is listed as critically endangered. Jaime Culebras/Photo Wildlife Tours

Earth’s amphibians are in serious trouble, but there is still time to save this unique class of animals. A study published October 4 in the journal Nature finds that two out of five amphibians are threatened with extinction and they continue to be the most threatened class of vertebrates. However, the new research also found that since 1980, the extinction risk of 63 species has been reduced due to conservation interventions.

[Related: Why you can’t put a price on biodiversity.]

“This proves that conservation works and it’s not all bad news,” Jennifer Luedtke, a study co-author and the manager of IUCN Red List Assessments at conservation organization Re:wild, said during a press conference. “We found that habitat protection alone is not sufficient. We need to mitigate the threats of disease and climate change.”

A check-up for amphibians

The findings are part of Global Amphibian Assessment II, an international series of conservation analyses based on evaluations of the 8,011 amphibian species listed on the IUCN Red List. The first Global Amphibian Assessment was published in 2004 and found that amphibians are Earth’s most threatened class of vertebrates. This second report confirms that the smooth-skinned animals are still more threatened than birds or mammals.

In the study, the team found that 118 species have been driven to extinction between 2004 and 2022. About 40 percent of the species studied are still categorized as threatened. This study also covers about 94 percent of the known amphibian species in 2022. According to Luedtke, about 155 new amphibian species are discovered every year, so there will likely be more species to add to the next Global Amphibian Assessment. 

Climate change and associated habitat loss are the primary driver of these declines. The team estimates that current and projected climate change effects are responsible for 39 percent of status deteriorations since 2004. Habitat loss has affected roughly 37 percent of species in the same period. 

Why amphibians are so vulnerable to climate change

Amphibians’ unique skin puts them in more danger in the face of a changing planet, since they use their skin to breathe. Increased frequency and intensity of storms, floods, droughts, changes in moisture levels and temperature, and sea level rise can all affect their very important breathing sites.

“They don’t have any protection in their skin like feathers, hair, or scales. They have a high tendency to lose water and heat through their skin,” Patricia Burrowes, a study co-author and herpetologist formerly with the University of Puerto Rico, said during a press conference. “The majority of frogs are nocturnal, and if it’s very hot, they will not come out because they will have lost so much water even in their retreat sites that they don’t have the energy to go out to feed. They won’t grow and won’t have energy to reproduce. And that can have demographic impacts.”

[Related: Hellbender salamanders may look scary, but the real fright is extinction.]

Extinctions have continued to increase with 37 documented in 2022. By comparison 23 species were reported extinct by 1980 and 33 in 2004. According to the report, the most recent species to go extinct were the frogs Atelopus chiriquiensis from Costa Rica and western Panama and Taudactylus acutirostris from Australia.

“Amphibians are essential parts of the ecosystem in a variety of ways, one of them being their role in the food web,” Kelsey Neam, study co-author and Re:wild’s Species Priorities and Metrics Coordinator, said during a press conference. “Amphibians are prey for many species and without amphibians, those animals lose a major source of their food and they are preying upon other animals like insects and other invertebrates. Without them to fulfill that niche, we will see a collapse of the food web.”

Amphibian pandemics

The most heavily affected amphibians were salamanders and newts, with three out of five salamander species at risk for extinction. While habitat loss is also the primary threat to salamanders, they are also particularly vulnerable to a disease called chytridiomycosis. It is caused by a fungal pathogen caused by the chytrid fungus that disrupts amphibian’s skin and physiological functions. When infected, amphibians can’t rehydrate properly, which creates an electrolyte imbalance that causes fatal heart attacks.

The Hickory Nut Gorge green salamander (Aneides caryaensis) is found in North Carolina, and is listed as critically endangered.
The Hickory Nut Gorge green salamander (Aneides caryaensis) is found in North Carolina, and is listed as critically endangered. CREDIT: Todd W. Pierson

“Droughts exacerbate the infection intensity,” said Burrowes. “When the frogs have the potential to present some kind of defense mechanism, that defense mechanism is monitored by changes in precipitation and temperature.”

North America is home to the world’s most biodiverse community of salamanders, including a group of lungless salamanders in the Appalachian Mountains. This has conservationists concerned about what would happen if another deadly fungal disease called Batrachochytrium salamandrivorans, or B.sal, arrives in the Americas from Asia or Europe.

‘We know what to do’

The report highlights that the time to help these critical animals is now. The authors point to the Kunming-Montreal Global Biodiversity Framework adopted by 190+ signatory countries at the United Nations Biodiversity Conference in December 2022. The signing nations committed to halting all human induced extinctions, reversing and reducing the extinction risk of species tenfold, and to recovering populations to a healthy level.

“We know what to do. It’s time to really commit the resources to actually achieving the change that we say we want,” said Luedtke. “Amphibians will be the better for it and so will we.”

The post How we can help the most endangered class of animals survive climate change appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Discoverers of colorful quantum dot nanotech win 2023 Nobel Prize in chemistry https://www.popsci.com/science/nobel-prize-chemistry-quantum-dots/ Wed, 04 Oct 2023 13:00:00 +0000 https://www.popsci.com/?p=577008
Moungi Bawendi, Louis Brus, and Alexei Ekimov will share the 2023 Nobel prize in chemistry.
Moungi Bawendi, Louis Brus, and Alexei Ekimov will share the 2023 Nobel prize in chemistry. Niklas Elmehed/Nobel Prize Outreach

Quantum dots can be found in modern computers, televisions, LED lights, and more.

The post Discoverers of colorful quantum dot nanotech win 2023 Nobel Prize in chemistry appeared first on Popular Science.

]]>
Moungi Bawendi, Louis Brus, and Alexei Ekimov will share the 2023 Nobel prize in chemistry.
Moungi Bawendi, Louis Brus, and Alexei Ekimov will share the 2023 Nobel prize in chemistry. Niklas Elmehed/Nobel Prize Outreach

The 2023 Nobel prize in chemistry was jointly awarded to Moungi Bawendi, Louis Brus, and Alexei Ekimov for the discovery and developments of quantum dots. These nanoparticles are so small that their size determines their properties. Quantum dots can be found in modern computers, televisions, and LED lights, among numerous other applications.

[Related: In photos: Journey to the center of a quantum computer.]

Bawendi is a professor at the Massachusetts Institute of Technology, Brus is a professor emeritus at Columbia University, and Ekimov works for a company called Nanocrystals Technology in New York State.

“For a long time, nobody thought you could ever actually make such small particles,” Johan Åqvist, chair of the Nobel Committee for Chemistry, said during a news conference. “But this year’s laureates succeeded.”

Size matters in the nanoscale

Quantum dots are among the smallest components of nanotechnology. Typically, an element’s properties are governed by how many electrons it has. When that matter shrinks down  to nano-dimensions quantum phenomena arise. This means the element’s properties are now governed by the size of the matter instead of the number of electrons it has. 

Quantum dots are made of only a thousand atoms. By comparison, one quantum dot is to a soccer ball as a soccer ball is to the planet Earth.

A quantum dot is a crystal that often consists of just a few thousand atoms. In terms of size, it has the same relationship to a soccer ball as a soccer ball as to the size of the Earth.
CREDIT: Johan Jarnestad/The Royal Swedish Academy of Sciences.

The quantum dots that Bawendi, Brus, and Ekimov produced are particles small enough for their properties to be determined by quantum phenomena. They are among the smallest, but most important particles, nanotechnology.

“Quantum dots have many fascinating and unusual properties. Importantly, they have different [colors] depending on their size,” Åqvist said in a statement

The movement of electrons in quantum dots is highly constrained. This then affects how they absorb and release visible light, allowing for very bright colors. The quantum dots themselves are nanoparticles that glow red, blue, or green and the color depends on the size of the particles. Larger dots shine red and smaller dots shine blue. The change in color depends on how electrons act differently in more confined or less confined spaces. 

When particles are just a few nanometers in diameter, the space available to the electrons shrink. This affects the particle's optical properties.
CREDIT: Johan Jarnestad/The Royal Swedish Academy of Sciences.

Big discoveries, super small particles

In 1937, physicists theorized that size-dependent quantum effects could arise in nanoparticles. However, it was almost impossible to sculpt in nano dimensions, so few believed that it was possible.

During the early 1980s, Ekimov created size-dependent quantum effects in colored glass. The color of the glass came from the nanoparticles of copper chloride. With this colorful experiment, Ekimov demonstrated that the particle size affected the color of the glass via quantum effects.

[Related: Quantum computers are starting to become more useful.]

A few years later, Brus became the first scientist in the world to prove that size-dependent quantum effects in particles were floating freely in a fluid. Brus and Ekimov were actually working independently from one another when they made their initial discoveries. 

In 1993, Bawendi revolutionized the chemical production of quantum dots. His techniques resulted in almost perfect particles, which was necessary for using the quantum dots in a wide range of applications. 

Quantum dots can now be found in computer monitors and television screens and even help biochemists and surgeons map tissues and remove tumors

Last year’s chemistry prize was also awarded to a trio of chemists: Carolyn R. Bertozzi for her work in bioorthogonal chemistry alongside K. Barry Sharpless and Morten Meldal for laying the foundation for click chemistry. 

The post Discoverers of colorful quantum dot nanotech win 2023 Nobel Prize in chemistry appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
No two parakeets sound exactly the same https://www.popsci.com/environment/parakeet-voice-print/ Tue, 03 Oct 2023 23:15:00 +0000 https://www.popsci.com/?p=576816
A green monk parakeet standing in dirt. Parrots could have a unique tone of voice just like humans do.
Monk parakeets could have a unique tone of voice just like humans do. Deposit Photos

The unique 'voice prints' could help the chatty birds pick one another out in a flock, according to new research.

The post No two parakeets sound exactly the same appeared first on Popular Science.

]]>
A green monk parakeet standing in dirt. Parrots could have a unique tone of voice just like humans do.
Monk parakeets could have a unique tone of voice just like humans do. Deposit Photos

Parrots are the chatterboxes of the animal kingdom. These famously social birds can learn new sounds throughout their lives and even produce calls that can be individually recognized by other members of their flock. A new study of monk parakeets found that individual birds have a unique tone of voice similar to humans called a “voice print.” The findings are described in a study published October 3 in the journal Royal Society Open Science.

[Related: The next frontier in saving the world’s heaviest parrots: genome sequencing.]

“It makes sense for monk parakeets to have an underlying voice print,” Simeon Smeele, a co-author of the study and biologist studying parrot social and vocal complexity at the Max Planck Institute of Animal Behavior, said in a statement. “It’s an elegant solution for a bird that dynamically changes its calls but still needs to be known in a very noisy flock.”

In humans, our voice print leaves a unique signature in the tone of our voice across every word we say. These voice prints remain even though humans have a very complex and flexible vocal repertoire. Other social animals also use similar cues to recognize one another. Individual dolphins, bats, and birds have a “signature call” that makes them identifiable to other members of their groups. However, signature calls encode identity in only one call type, and there hasn’t been much evidence that suggests animals have unique signatures that last throughout their entire repertoire of calls. 

Parrots use their tongue and mouth to modulate calls similar to the way humans speak. According to Smeele, “their grunts and shrieks sound much more human than a songbird’s clean whistle.” 

Parrots also live in large groups with fluid membership where multiple birds vocalize at the same time. Members need a way to keep track of which individual is making what sound. The question became if the right physical anatomy coupled with the need to navigate complex social lives, helped parrots evolve a voice print. 

In the study, Smeele and his team traveled to Barcelona, Spain—home to the largest population of individually marked parrots in the wild. The parakeets are considered an invasive species and they swarm Barcelona’s parks in flocks with hundreds of members. The Museu de Ciències Naturals de Barcelona has been marking the parakeets for 20 years and have individually identified 3,000 birds.

The team used microphones to record the calls of hundreds of individuals and collected over 5,000 vocalizations in total. They also re-recorded the same individuals over a period of two years, which revealed the stability of the calls over time.

Using a set of computer models, they detected how recognizable individual birds were within each of the five main call types given by this species (contact, tja, trrup, alarm, and growl). They found high variability in the “contact call” that birds use to broadcast their identity. According to the team, this overturned a long-held assumption that contact calls contain a stable individual signal. The new findings suggested that the parakeets are actually using something else for individual recognition.

[Related: These clever cockatoos carry around toolkits to get to food faster.]

To investigate if voice prints were at play, the team used a machine learning model widely used in human voice recognition. The model detects the identity of the speaker using the quality, or timbre, of their voice. The team trained the model to recognize calls of individual birds that were categorized as “tonal” in sound. They then tested to see if the model could detect the same individual from a separate set of calls that were classified as “growling” in sound. The model was able to identify the individual parrots three times better than expected, providing evidence that monk parakeets do actually have a recognizable, individual voice print. 

While exciting, the authors caution that this evidence is still preliminary. Future experiments and analyses could use the parrot tagging work from the team in Barcelona. The GPS devices could help determine how much individuals overlap in their roaming areas.

“This can provide insight into the species’ remarkable ability to discriminate between calls from different individuals,” study co-author and ecologist from Museu de Ciències Naturals de Barcelona Juan Carlos Senar said in a statement.

The post No two parakeets sound exactly the same appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Bursting stars could explain why it was so bright after the big bang https://www.popsci.com/science/star-bursts-cosmic-dawn/ Tue, 03 Oct 2023 14:00:00 +0000 https://www.popsci.com/?p=576696
Artist conception of early starbursting galaxies. The image is rendered from FIRE simulation data used for this research that can explain recent JWST results. Stars and galaxies are shown in the bright white points of light, while the more diffuse dark matter and gas are shown in purples and reds.
Artist conception of early starbursting galaxies. The image is rendered from FIRE simulation data used for this research that can explain recent JWST results. Stars and galaxies are shown in the bright white points of light, while the more diffuse dark matter and gas are shown in purples and reds. Aaron M. Geller, Northwestern, CIERA + IT-RCDS

Intense flashes of light may explain why early galaxies imaged by the James Webb Space Telescope are so dazzling.

The post Bursting stars could explain why it was so bright after the big bang appeared first on Popular Science.

]]>
Artist conception of early starbursting galaxies. The image is rendered from FIRE simulation data used for this research that can explain recent JWST results. Stars and galaxies are shown in the bright white points of light, while the more diffuse dark matter and gas are shown in purples and reds.
Artist conception of early starbursting galaxies. The image is rendered from FIRE simulation data used for this research that can explain recent JWST results. Stars and galaxies are shown in the bright white points of light, while the more diffuse dark matter and gas are shown in purples and reds. Aaron M. Geller, Northwestern, CIERA + IT-RCDS

In space, the brightness of a galaxy is typically determined by its mass. However, some new research suggests that less massive galaxies can actually glow just as brightly as larger ones. Due to irregular and brilliant bursts of star formation, some  younger galaxies appear deceptively large. The new findings are detailed in a study published October 3 in the Astrophysical Journal Letters.

[Related: Our universe mastered the art of making galaxies while it was still young.]

The first stellar images released by the James Webb Space Telescope (JWST) in 2022 came with a bit of a quandary. To some astronomers, the young galaxies appeared to be too bright, too massive, and too mature to have formed so soon after the big bang, almost as if an infant grew into an adult after only a few years. 

“The discovery of these galaxies was a big surprise because they were substantially brighter than anticipated,” study co- author and Northwestern University astrophysicist Claude-André Faucher-Giguère said in a statement. “Typically, a galaxy is bright because it’s big. But because these galaxies formed at cosmic dawn, not enough time has passed since the big bang. How could these massive galaxies assemble so quickly? Our simulations show that galaxies have no problem forming this brightness by cosmic dawn.”

The period in cosmological history called Cosmic Dawn lasted from about 100 million years to 1 billion years after the big bang and is marked by the formation of the first stars and galaxies in the universe

“The JWST brought us a lot of knowledge about cosmic dawn,” study co-author and Northwestern University astrophysicist Guochao Sun said in a statement. “Prior to JWST, most of our knowledge about the early universe was speculation based on data from very few sources. With the huge increase in observing power, we can see physical details about the galaxies and use that solid observational evidence to study the physics to understand what’s happening.”

The team used advanced computer simulations to model how galaxies formed just after the big bang. Part of Northwestern’s Feedback of Relativistic Environments (FIRE) project, the simulations combine astrophysical theory and advanced algorithms to model how galaxies form. These models help researchers see how galaxies grow and change shape all while considering mass, energy, momentum, and chemical elements returned from stars

“The key is to reproduce a sufficient amount of light in a system within a short amount of time,” Sun said. “That can happen either because the system is really massive or because it has the ability to produce a lot of light quickly. In the latter case, a system doesn’t need to be that massive. If star formation happens in bursts, it will emit flashes of light. That is why we see several very bright galaxies.”

[Related: Your guide to the types of stars, from their dusty births to violent deaths.]

The simulations in the study created galaxies that were just as bright as the ones observed by JWST. They also found that the early galaxies formed at cosmic dawn likely had stars that formed in bursts. This is a concept called bursty star formation, where stars form in an alternating pattern. It begins with the formation of a bunch of stars at once, then millions of years with little to no stars, and then another burst of stars. By comparison, our Milky Way galaxy followed a very different pattern of star formation at a steady rate.

According to Faucher-Giguère, bursty star formation is particularly common in low-mass galaxies. However, the details of why this happens are still the subject of other research. The team on this study believes that it happens when the initial bursts of stars explode as supernovae a few million years later. The gas is kicked out and then falls back inwards to form new stars and drives the cycle again. 

When the galaxies get massive enough, they have significantly stronger gravity. So when the  supernovae explode, they aren’t strong enough to eject gas from the star system and the gravity binds the galaxy together. The result is a more steady state.

“Most of the light in a galaxy comes from the most massive stars,” Faucher-Giguère said in a statement. “Because more massive stars burn at a higher speed, they are shorter lived. They rapidly use up their fuel in nuclear reactions. So, the brightness of a galaxy is more directly related to how many stars it has formed in the last few million years than the mass of the galaxy as a whole.”

The post Bursting stars could explain why it was so bright after the big bang appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Winners of the 2023 Nobel Prize in physics measured electrons by the attosecond https://www.popsci.com/science/nobel-prize-physics-attosecond/ Tue, 03 Oct 2023 13:30:00 +0000 https://www.popsci.com/?p=576735
An illustration of Pierre Agostini, Ferenc Krausz, and Anne L´Huillier. The three will share the 2023 Nobel prize in physics.
Pierre Agostini, Ferenc Krausz, and Anne L´Huillier will share the 2023 Nobel prize in physics. Niklas Elmehed/Nobel Prize Outreach

Their groundbreaking research helps generate and measure some of the 'most rapid physical effects known.'

The post Winners of the 2023 Nobel Prize in physics measured electrons by the attosecond appeared first on Popular Science.

]]>
An illustration of Pierre Agostini, Ferenc Krausz, and Anne L´Huillier. The three will share the 2023 Nobel prize in physics.
Pierre Agostini, Ferenc Krausz, and Anne L´Huillier will share the 2023 Nobel prize in physics. Niklas Elmehed/Nobel Prize Outreach

The 2023 Nobel prize in physics was just awarded to three physicists for their work probing the world of electrons. Pierre Agostini, Ferenc Krausz, and Anne L’Huillier will jointly share the prestigious prize.

[Related: When light flashes for a quintillionth of a second, things get weird.]

These physicists “are being recognised for their experiments, which have given humanity new tools for exploring the world of electrons inside atoms and molecules,” the Nobel committee wrote on Tuesday. “Pierre Agostini, Ferenc Krausz and Anne L’Huillier have demonstrated a way to create extremely short pulses of light that can be used to measure the rapid processes in which electrons move or change energy.”

Agostini is a professor emeritus at Ohio State University. Krausz is affiliated with the Max Planck Institute of Quantum Optics and the Ludwig Maximilian University of Munich. L’Huillier is a professor at Lund University in Sweden and the fifth woman ever awarded the physics prize. 

Discovering the attosecond

When perceived by humans, fast-moving events flow into each other similar to the way a flip book of still images can be perceived as continual movement. To better investigate these extremely brief events, special technology is needed.

In the world of electrons, these changes occur in an attosecond, or only a millionth of a trillionth of a second. An attosecond is so short that there are as many attoseconds in one second as there have been seconds since the birth of the universe roughly 13.8 billion years ago

Electrons’ movements in atoms and molecules are measured in these attoseconds. Agostini, Krausz, and L’Huillier have conducted experiments that demonstrate how attosecond pulses could actually be observed and measured, according to the awarding committee.

Overtones of light

In 1987, L’Huillier discovered that many different overtones of light arose when she transmitted infrared laser light through a noble gas. Each individual overtone is a light wave that has a given number of cycles for each cycle in the laser light. The overtones are caused by the laser light interacting with atoms in the gas. They give some electrons an extra energy boost that is then emitted as light. In the almost four decades since, L’Huillier has continued to explore this phenomenon which laid the foundation for subsequent breakthroughs.

[Related: This record-breaking X-ray laser is ready to unlock quantum secrets.]

In 2001, Agostini produced and investigated a series of consecutive light pulses. During these experiments, each pulse lasted only 250 attoseconds. At the same time, Krausz was working with another type of experiment. His experiment made it possible to isolate a single light pulse that lasted 650 attoseconds.

This work enabled the investigation into physical processes that are so rapid that they were previously impossible to follow. 

“We can now open the door to the world of electrons. Attosecond physics gives us the opportunity to understand mechanisms that are governed by electrons. The next step will be utilizing them,” Chair of the Nobel Committee for Physics Eva Olsson said in a statement.

This groundbreaking work has potential applications in electronics and medicine in the future. In electronics, understanding and controlling how electrons behave in a material is crucial. Attosecond pulses could also identify different molecules in future medical diagnostics.

“In much the same fashion that a photographer may use a flash of light to capture a hummingbird’s wing or a baseball being hit, this year’s Nobel prize winners developed revolutionary methods to generate and measure extremely fast laser pulses that can capture some of the most rapid physical effects known,” Johns Hopkins University physicist N. Peter Armitage told PopSci in an email. “Among other aspects, their work gives insight into the motion of electrons between atoms and allows movies of chemical reactions to be made. It’s remarkable fundamental science, and was done for that reason, but these discoveries may ultimately allow insight into the effects that give superconductivity at high temperatures and efficient energy harvesting from light.”

The 2022 Nobel prize in physics was awarded to John F. Clauser, Alain Aspect, and Anton Zeilinger for their independent contributions to understanding quantum entanglement. Other past winners include Pierre and Marie (Sklodowska) Curie in 1903 and Max Planck in 1918.

The post Winners of the 2023 Nobel Prize in physics measured electrons by the attosecond appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Grisly medieval murders detailed in new interactive maps https://www.popsci.com/science/england-medieval-murder-map/ Mon, 02 Oct 2023 16:00:00 +0000 https://www.popsci.com/?p=576492
A map of Britain in the late 13th century.
A map of Britain in the late 13th century. British Library/University of Cambridge

A ‘perfect storm’ of hormones, alcohol, and deadly weapons made this English city a murder hot spot in the 14th century.

The post Grisly medieval murders detailed in new interactive maps appeared first on Popular Science.

]]>
A map of Britain in the late 13th century.
A map of Britain in the late 13th century. British Library/University of Cambridge

Fictional murderous barbers and real life serial killers are woven into London’s spooky history with legendary tales of their dastardly deeds. However, Sweeney Todd or Jack the Ripper may have paled in comparison to students from Oxford in the 14th century. A project mapping medieval England’s known murder cases found that Oxford’s student population was the most lethal of all social or professional groups, committing about 75 percent of all homicides.

[Related: How DNA evidence could help put the Long Island serial killer behind bars.]

First launched in 2018, Cambridge’s Medieval Murder Maps plots crime scenes based on translated investigations from 700-year-old coroners’ reports. These documents were recorded in Latinand are catalogs of sudden or suspicious deaths that were deduced by a jury of local residents. They also included names, events, locations, and even the value of murder weapons. The project recently added the cities of York and Oxford to its street plan of slayings during the 14th century. 

The team used these rolls and maps to construct the street atlas of 354 homicides across the three cities. It has also been updated to include accidents, sudden deaths, deaths in prison, and sanctuary church cases. 

They estimate that  the per capita homicide rate in Oxford was potentially 4 to 5 times higher than late medieval London or York. It also put the homicide rate at about 60 to 75 per 100,000—about 50 times higher than the murder rates in today’s English cities. The maps, however, don’t factor in the major advances in medicine, policing, and emergency response in the centuries since.

York’s murderous mayhem was likely driven by inter- knife fights among tannery workers (Tanners) to fatal violence between glove makers (Glovers) during the rare 14th century period of prosperity driven by trade and textile manufacturing as the Black Death subsided. But Oxford’s rambunctious youth made for a dangerous scene.

By the early 14th century, Oxford had a population of roughly 7,000 inhabitants, with about 1,500 students. Among perpetrators from Oxford, coroners referred to 75 percent of them as “clericus.” The term most likely refers to a student or a member of the early university. Additionally, 72 percent of all Oxford’s homicide victims also have the designation clericus in the coroner inquests.

An example of the coroners' rolls, this one recounting the 'Death of Hervey de Playford.” It comes from a roll from London documenting 1315 and 1316. CREDIT: University of Cambridge/Violence Research Centre
An example of the coroners’ rolls, this one recounting the ‘Death of Hervey de Playford.” It comes from a roll from London documenting 1315 and 1316. CREDIT: University of Cambridge/Violence Research Centre

“A medieval university city such as Oxford had a deadly mix of conditions,” lead murder map investigator and University of Cambridge criminologist Manuel Eisner said in a statement. “Oxford students were all male and typically aged between fourteen and twenty-one, the peak for violence and risk-taking. These were young men freed from tight controls of family, parish or guild, and thrust into an environment full of weapons, with ample access to alehouses and sex workers.”

Many of the students also belonged to regional fraternities known as “nations,” which could have added more tension within the student body.

One Thursday night in 1298, an argument among students in an Oxford High Street tavern resulted in a mass street fight complete with battle-axes and swords. According to the coroner’s report, a student named John Burel had, “a mortal wound on the crown of his head, six inches long and in depth reaching to the brain.”

Interactions with sex workers also could end tragically. One unknown scholar got away with murdering Margery de Hereford in the parish of St. Aldate in 1299. He fled the scene after stabbing her to death instead of paying what he owed. 

[Related: A lost ‘bawdy bard’ act reveals roots of naughty British comedy.]

Many of the cases in all three cities also involved intervention of bystanders, who were obligated to announce if a crime was being committed, or raise a “hue and cry.” Some of the bystanders summoned by hue ended up as victims or perpetrators.

“Before modern policing, victims or witnesses had a legal responsibility to alert the community to a crime by shouting and making noise. This was known as raising a hue and cry,” co-researchers and Cambridge crime historian Stephanie Brown said in a statement. “It was mostly women who raised hue and cry, usually reporting conflicts between men in order to keep the peace.”

Medieval street justice was also coupled with plentiful weapons in everyday life, which could  make even minor infractions lethal. London’s cases include altercations that started over littering and urination that led to homicide. 

“Knives were omnipresent in medieval society,” said Brown. “A thwytel was a small knife, often valued at one penny, and used as cutlery or for everyday tasks. Axes were commonplace in homes for cutting wood, and many men carried a staff.”

The team told The Guardian that they hope this project encourages people to reflect on the possible notices behind historic homicide and explore the parallels between these incidents and the altercations in the present. 

The post Grisly medieval murders detailed in new interactive maps appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
mRNA vaccine innovators win the Nobel Prize in medicine https://www.popsci.com/health/nobel-prize-medicine-covid-19-mrna/ Mon, 02 Oct 2023 13:00:00 +0000 https://www.popsci.com/?p=576419
The 2023 Nobel Prize in Physiology or Medicine is jointly awarded to Katalin Karikó and Drew Weissman Katalin Karikó and Drew Weissman. This is an illustration of the two scientists.
The 2023 Nobel Prize in Physiology or Medicine is jointly awarded to Katalin Karikó and Drew Weissman Katalin Karikó and Drew Weissman. Niklas Elmehed/Nobel Prize Outreach

Katalin Karikó and Drew Weissman’s work was fundamental in developing COVID-19 vaccines and more.

The post mRNA vaccine innovators win the Nobel Prize in medicine appeared first on Popular Science.

]]>
The 2023 Nobel Prize in Physiology or Medicine is jointly awarded to Katalin Karikó and Drew Weissman Katalin Karikó and Drew Weissman. This is an illustration of the two scientists.
The 2023 Nobel Prize in Physiology or Medicine is jointly awarded to Katalin Karikó and Drew Weissman Katalin Karikó and Drew Weissman. Niklas Elmehed/Nobel Prize Outreach

The 2023 Nobel Prize in medicine was awarded to Katalin Karikó and Drew Weissman, two of the scientists whose work helped pave the way for mRNA vaccines against COVID-19. Karikó is a biochemist from Sagan’s University in Hungary and an adjunct professor at the University of Pennsylvania. Karikó was also senior vice president and head of RNA protein replacement at BioNTech until 2022 and has been an advisor for the company. Weissman is a vaccine researcher at the University of Pennsylvania’s Perelman School of Medicine and Director of the Penn Institute for RNA Innovations.

[Related: How does an mRNA vaccine work?]

The prize is awarded by the Nobel Assembly of Sweden’s Karolinska Institute medical university and comes with its signature gold medicine and about $1 million (11 million Swedish crowns). 

“Through their groundbreaking findings, which have fundamentally changed our understanding of how mRNA interacts with our immune system, the laureates contributed to the unprecedented rate of vaccine development during one of the greatest threats to human health in modern times,” the panel wrote in a press release

A potential game changer for vaccines

Previously, growing viruses, or at least pieces of viruses, were necessary to make a vaccine. The viruses were often cultivated in giant vats of cells or in or in chicken eggs, like the majority of flu shots. The viruses are then purified before being made into a vaccine.  

Using messenger RNA (mRNA) in vaccines is very different. It starts with a snippet of genetic code that brings instructions for making proteins. If the right virus protein is selected for the vaccine, then the body produces its own defenses against the virus. 

Genetic information encoded in DNA is transferred to mRNA, which is used as a blueprint for protein production in our cells. During the 1980s, efficient methods for producing mRNA without cell culture began. This process, called in vitro transcription, accelerated the development of molecular biology applications to several fields, but using mRNA technologies for vaccines had several roadblocks. In vitro transcribed mRNA was considered unstable and challenging to deliver since it required scientists to develop sophisticated carrier lipid systems to enclose the mRNA and produced some early inflammatory reactions. 

[Related: The FDA just green-lit America’s first COVID vaccine.]

Karikó was devoted to the idea of using mRNA for vaccines and other therapeutics during the 1990s when she became colleagues with Weissman. Weissman was interested in dendritic cells, which are important for immune surveillance and triggering vaccine-induced immune responses. 

The breakthrough

The two began to focus on how different RNA types interact with the immune system and noticed that the dendritic cells recognize in vitro transcribed mRNA as a foreign substance. This leads to their activation and release of inflammatory signaling molecules.mRNA from mammalian cells did not give rise to the same reaction,  the panel wrote. Different types of mRNA, therefore, must be distinguishable.

RNA contains four bases that are abbreviated A, U, G, and C. These letters correspond to the letters of genetic code in DNA A, T, G, and C. Karikó and Weissman knew that bases in RNA from mammalian cells are often chemically modified, and in vitro transcribed mRNA is not. They then wondered if the absence of altered bases in the in vitro transcribed RNA could explain unwanted inflammatory reactions. 

To learn more, they created different variants of mRNA which had unique chemical alterations at their bases. They delivered these to dendritic cells and the results were huge.  

The inflammatory response was almost wiped out when these base modifications were included in the mRNA. This was a seismic shift in scientific understanding of how cells recognize and respond to different forms of mRNA. . Their results were published in 2005.

mRNA contains four different bases, abbreviated A, U, G, and C. The Nobel Laureates discovered that base-modified mRNA can be used to block activation of inflammatory reactions (secretion of signaling molecules) and increase protein production when mRNA is delivered to cells.
mRNA contains four different bases, abbreviated A, U, G, and C. The Nobel Laureates discovered that base-modified mRNA can be used to block activation of inflammatory reactions (secretion of signaling molecules) and increase protein production when mRNA is delivered to cells. CREDIT: Mattias Karlén/The Nobel Committee for Physiology or Medicine.

COVID-19 and The Future

Interest in mRNA technology began to accelerate with their discovery. In 2010 several companies were working on developing the method for viruses such as Zika virus and MERS-CoV.

[Related: White House invests $5 billion in new COVID vaccines and treatments as national emergency ends.]

After the COVID-19 pandemic began, two base-modified mRNA vaccines encoding the SARS-CoV-2 surface protein were developed at a breakneck pace. Two highly effective vaccines were approved in December 2020.

One of the major advantages of mRNA technology was that vaccines could be made in extremely large quantities since their main components are made in laboratories, Exeter University infectious disease expert Bharat Pankhania told the Associated Press.  mRNA tech could be used to refine vaccines for diseases including Ebola, malaria, and dengue, as well as help immunize people against auto-immune diseases like lupus and even some types of cancer.

The laureates will receive their awards at ceremonies on December 10. The 2022 medicine prize was awarded to Svante Pääbo for sequencing the genome of the Neanderthal. Other past winners include Karl Landsteiner in 1930 for the discovery of human blood groups and co-winner Alexander Fleming for the discovery of penicillin in 1945.

The post mRNA vaccine innovators win the Nobel Prize in medicine appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A ‘ring of fire’ eclipse and Hunter’s Moon will bring lunar drama to October’s skies https://www.popsci.com/science/stargazing-guide-october-2023/ Sun, 01 Oct 2023 10:00:00 +0000 https://www.popsci.com/?p=575752
Purple, blue, and white meteors fall at night during October stargazing
October is the time of year for the Orionids meteor shower. More than two-dozen meteors were caught in successively added exposures in October 2017 in Inner Mongolia, China. Yin Hao/NASA

The full moon will vanish over some continents.

The post A ‘ring of fire’ eclipse and Hunter’s Moon will bring lunar drama to October’s skies appeared first on Popular Science.

]]>
Purple, blue, and white meteors fall at night during October stargazing
October is the time of year for the Orionids meteor shower. More than two-dozen meteors were caught in successively added exposures in October 2017 in Inner Mongolia, China. Yin Hao/NASA
October 14Annular Solar Eclipse
October 21-22Orionids Meteor Shower Predicted Peak
October 23Venus at Greatest Western Elongation
October 28Full Hunter’s Moon and Partial Lunar Eclipse

The Northern Hemisphere has officially passed the autumnal equinox. The days are getting shorter and colder, but the night sky remains as hot as ever. This month is going to be a big one for cosmic events, with an exciting annular solar eclipse, meteor showers, and clearer stargazing as the temperatures and humidity drop. Aurora activity can also really pick up this time of year, for those lucky enough to be at the right latitudes to catch a glimpse of the northern lights. Here are some events to look out for this month. If you happen to get any stellar sky photos, please tag us and include #PopSkyGazers.  

October 14 – Annular Solar Eclipse

Chances are you have heard about this one already. The moon will pass between Earth and the sun and cast a huge shadow on our planet in the process. With the right protective eyewear, it will be a sight to behold—the phenomenon produces a “ring of fire” as if the moon is outlined with flames.  

Astronomers have calculated precisely when the best views will be where you are, so consult this list when scheduling an outing to safely check out the sky. The duration will range from little more than one minute to almost five, depending where you are located in its path. This eclipse has a 125-mile-wide path of annularity that will begin in Oregon at 12:13 p.m. Eastern Daylight Time. It will leave the US at about 1:03 p.m. EDT and head southeastward toward Central and South America. 

October 21 and 22 – Orionids Meteor Shower Predicted Peak

The annual Orionid meteor shower is expected to peak on October 22 in a moonless sky, but the wee hours of the morning of October 21 could also yield some meteors. According to EarthSky, under a dark sky with no moon, the Orionids can produce a maximum of about 10 to 20 meteors per hour. On October 22, the moon will be setting around midnight, which means its light shouldn’t interfere with the shower. The best time to try and spot the shower is just after midnight into the early morning hours 

October 23 – Venus at Greatest Elongation

In August, the planet Venus moved between the Earth and the sun and rose in the east. Venus will be farthest from the sunrise on October 23 and should remain visible in the morning sky until May 2024, where it will be a very bright “morning star.” 

During this month’s greatest elongation, Venus will appear higher in the sky from the Northern Hemisphere than from the Southern Hemisphere. This is because of the steep angle of the path of the sun, moon, and planets in the mornings during the autumn months. 

October 28- Full Hunter’s Moon and Partial Lunar Eclipse

The full Hunter’s Moon will reach peak illumination at 4:24 p.m. EDT on Saturday, October 28, but you can start to look for it on October 27. The Hunter’s Moon is always the first full moon after the Harvest Moon. According to the Farmer’s Almanac, the name originates as a signal for hunters to prepare for the upcoming winter to ensure that they have enough food. It is also when animals like the stars of Fat Bear Week are beginning to bulk up for a long winter’s hibernation, and animals may be easier to spot since fields are being cleared. Other names for October’s full moon include the Falling Leaves Moon or Binaakwe-giizis in Anishinaabemowin (Ojibwe) and the Someone Stores Food Moon or Yutekhway^he in Oneida.

Additionally, a partial lunar eclipse is predicted for this same day. Between 3:36 and 4:53 EDT, the moon will pass through the Earth’s shadow. The eclipse should be visible in any location where the moon is above the horizon at the time, including parts of Asia, Russia, Africa, Oceania, and Europe.

The same skygazing rules that apply to pretty much all space-watching activities are key this month: Go to a dark spot away from the lights of a city or town and let the eyes adjust to the darkness for about a half an hour.

The post A ‘ring of fire’ eclipse and Hunter’s Moon will bring lunar drama to October’s skies appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why are these orcas harassing porpoises? Scientists have 3 theories. https://www.popsci.com/environment/orcas-harass-porpoises/ Fri, 29 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=576067
A killer whale in the Salish Sea is observed harassing a porpoise, a behavior that has long perplexed scientists.
A killer whale in the Salish Sea is observed harassing a porpoise, a behavior that has long perplexed scientists. Wild Orca

The Southern Resident orcas only eat fish, particularly Chinook salmon.

The post Why are these orcas harassing porpoises? Scientists have 3 theories. appeared first on Popular Science.

]]>
A killer whale in the Salish Sea is observed harassing a porpoise, a behavior that has long perplexed scientists.
A killer whale in the Salish Sea is observed harassing a porpoise, a behavior that has long perplexed scientists. Wild Orca

Despite only eating fish, the Southern Resident orcas of the Pacific Northwest’s Salish Sea are known for a perplexing behavior. They harass and even kill porpoises without eating them and scientists are not really sure why. A study published September 28 in the journal Marine Mammal Science looked at over 60 years of data to try and solve this ongoing mystery.

[Related: Raising male offspring comes at a high price for orca mothers.]

While their relatives called transient killer whales eat other organisms including squid, shark, and porpoises, the Southern Resident orcas exclusively eat fish, particularly Chinook salmon. The strange porpoise-harassing behavior was first scientifically documented in 1962. The new study analyzed 78 documented incidents and found three plausible explanations.

Orcas at play

The behavior may be a form of social play for orcas. Like many intelligent species including dogs, elephants, and kangaroos, these whales sometimes engage in playful activities as a way to bond, communicate, or just simply enjoy themselves. Going after porpoises might benefit their group coordination and teamwork.

This theory may be reminiscent of the orcas who became famous for sinking boats in Spain and Portugal. While the Southern Resident killer whales and the whales from the Iberian Peninsula are two different populations with distinct cultures, their affinity for play could be something both populations share, according to the authors of the study

Hunting practice

Going after a larger animal like porpoises might help these whales hone their critical salmon-hunting skills. They may view porpoises as moving targets to practice their hunting techniques, even if a meal is not the end result.

Mismothering behavior

The orcas may be attempting to provide care for porpoises that they perceive as either sick or weak. This could be a behavioral manifestation of their natural inclination to help others within their pod. Female orcas have been observed carrying their deceased calves and have been observed carrying porpoises in a similar manner.  

Scientists also call mismothering behavior displaced epimeletic behavior. It could be due to their limited opportunities to care for their young, according to study co-author and science and research director at Wild Orca Deborah Giles. 

“Our research has shown that due to malnutrition, nearly 70 percent of Southern Resident killer whale pregnancies have resulted in miscarriages or calves that died right away after birth,” Giles said in a statement.

An endangered group

Southern Resident killer whales are considered an endangered population. Currently, only 75 individuals exist and their survival is essentially tied to Chinook salmon. A 2022 study found that these orcas have been in a food deficit for over 40 years and another study found that the older and fatter fish are also becoming more scarce in several populations.

“I am frequently asked, why don’t the Southern Residents just eat seals or porpoises instead?” said Giles. “It’s because fish-eating killer whales have a completely different ecology and culture from orcas that eat marine mammals—even though the two populations live in the same waters. So we must conclude that their interactions with porpoises serve a different purpose, but this purpose has only been speculation until now.”

Even with these three theories for the behavior, the team acknowledges that the exact reason behind porpoise harassment may always remain a mystery. What is clear is that porpoises are not a part of the Southern Resident killer whale diet, so eating them is highly unlikely. 

“Killer whales are incredibly complex and intelligent animals. We found that porpoise-harassing behavior has been passed on through generations and across social groupings. It’s an amazing example of killer whale culture,” Sarah Teman, a study co-author and marine mammal biologist with the University of California, Davis School of Veterinary Medicine’s SeaDoc Society, said in a statement. “Still, we don’t expect the Southern Resident killer whales to start eating porpoises. The culture of eating salmon is deeply ingrained in Southern Resident society. These whales need healthy salmon populations to survive.”

However, this research does underscore the importance of salmon conservation in the Salish Sea and the Southern Resident’s entire range. They generally stay near southern Vancouver Island and Washington State, but their range can extend as far as the central California coast and southeastern Alaska.  Maintaining an adequate salmon supply will be vital to their survival and well-being of the Salish Sea ecosystem as a whole.

The post Why are these orcas harassing porpoises? Scientists have 3 theories. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This 6-million-year-old turtle shell still has some DNA https://www.popsci.com/environment/6-million-year-old-turtle-dna/ Fri, 29 Sep 2023 13:00:00 +0000 https://www.popsci.com/?p=575977
The researchers found preserved bone cells in the carapace, which exhibited structures like the nucleus of a cell, where DNA traces were found.
The researchers found preserved bone cells in the carapace, which exhibited structures like the nucleus of a cell, where DNA traces were found. Edwin Cadena/Universidad del Rosario/Smithsonian Tropical Research Institute in Panama

The extracted material could redefine how long DNA and protein can survive in the fossil record.

The post This 6-million-year-old turtle shell still has some DNA appeared first on Popular Science.

]]>
The researchers found preserved bone cells in the carapace, which exhibited structures like the nucleus of a cell, where DNA traces were found.
The researchers found preserved bone cells in the carapace, which exhibited structures like the nucleus of a cell, where DNA traces were found. Edwin Cadena/Universidad del Rosario/Smithsonian Tropical Research Institute in Panama

Sea turtles have been around for at least 110 million years, yet relatively little is known about their evolution. Two of the most common sea turtles on Earth are olive ridley and Kemp’s ridley turtles that belong to a genus called Lepidochelys that could help fill in some of the gaps of sea turtle biology and evolution. A team of paleontologists not only discovered the oldest known fossil of turtle from the Lepidochelys genus, but also found some traces of ancient turtle DNA. The findings are detailed in a study published September 28 in the Journal of Vertebrate Paleontology.

[Related: 150 million-year-old turtle ‘pancake’ found in Germany.]

The DNA comes from the remains of a turtle shell first uncovered in 2015 in the Chagres Formation on Panama’s Caribbean coast. It represents the oldest known fossil evidence of Lepidochelys turtles. The turtle lived approximately 6 million years ago, curing the upper Miocene Epoch. At this time, present day Panama’s climate was getting cooler and drier, sea ice was accumulating at Earth’s poles, rainfall was decreasing, sea levels were falling.

“The fossil was not complete, but it had enough features to identify it as a member of the Lepidochelys genus,” study co-author and Universidad del Rosario in Bogotá, Colombia paleontologist Edwin Cadena tells PopSci. Cadena is also a research associate at the Smithsonian Tropical Research Institute in Panama.

The team detected preserved bone cells called osteocytes. These bone cells are the most abundant cells in vertebrates and they have nucleus-like structures. The team used a solution called DAPI to test the osteocytes for genetic material.

“In some of them [the osteocytes], the nuclei were preserved and reacted to DAPI, a solution that allowed us to recognize remains of DNA. This is the first time we have documented DNA remains in a fossilized turtle millions of years old,” says Cadena.

According to the study, fossils like this one from vertebrates preserved in this part of Panama are important for our understanding of the biodiversity that was present when the Isthmus of Panama first emerged roughly 3 million years ago. This narrow strip of land divided the Caribbean Sea and the Pacific Ocean and joined North and South America. It created a land bridge that made it easier for some animals and plants to migrate between the two continents.

[Related: Hungry green sea turtles have eaten in the same seagrass meadows for about 3,000 years.]

This specimen could also have important implications for the emerging field of molecular paleontology. Scientists in this field study ancient and prehistoric biomatter including proteins, carbohydrates, lipids, and DNA that can sometimes be extracted from fossils. 

Molecular paleontology aims to determine if scientists can use this type of evidence to determine more about the organisms than their physical shape, which is typically what is preserved in most fossils. Extracting this tiny material from bones was critical in sequencing the Neanderthal genome, which earned Swedish scientist Svante Pääbo the 2022 Nobel prize in physiology or medicine.

“Many generations have grown up with the idea of extracting and bringing back to life extinct organisms,” says Cadena. “However, that is not the real purpose of molecular paleontology. Instead, its goal is to trace, document, and understand how complex biomolecules such as DNA and proteins can be preserved in fossils.”

This new turtle specimen could help other molecular paleontologists better understand how soft tissues can be preserved over time. It could also shift the idea that original biomolecules like proteins or DNA have a specific timeline for preservation in fossils and encourage re-examining older specimens for traces of biomolecules. 

The post This 6-million-year-old turtle shell still has some DNA appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A boiling hot supercontinent could kill all mammals in 250 million years https://www.popsci.com/science/mammals-extinction-volcano-supercontinent/ Thu, 28 Sep 2023 18:00:00 +0000 https://www.popsci.com/?p=575587
A volcano spews lava and ash. In roughly 250 million years, massive tectonic activity could push together all of our current landmasses into a supercontinent like Pangea and make the climate inhospitable to humans and other mammals.
In roughly 250 million years, tectonic activity could push together all of our current landmasses into a supercontinent like Pangea and make the climate inhospitable to humans and other mammals. Deposit Photos

The history and future of mass extinctions.

The post A boiling hot supercontinent could kill all mammals in 250 million years appeared first on Popular Science.

]]>
A volcano spews lava and ash. In roughly 250 million years, massive tectonic activity could push together all of our current landmasses into a supercontinent like Pangea and make the climate inhospitable to humans and other mammals.
In roughly 250 million years, tectonic activity could push together all of our current landmasses into a supercontinent like Pangea and make the climate inhospitable to humans and other mammals. Deposit Photos

Despite having the critical and even miraculous ingredients to sustain life from microscopic viruses up to big blue whales, planet Earth likely has a future that spells some doom for most, if not all, species of mammals—including humans. A study published September 25 in the journal Nature Geosciences made the bold prediction that in about 250 million years, all of Earth’s major land masses will join together as one. When they do, it could make our planet one extremely hot and almost completely uninhabitable for mammals.

[Related: Mixing volcanic ash with meteorites may have jump-started life on Earth.]

“Widespread temperatures of between 40 to 50 degrees Celsius [104 to 122 degrees Fahrenheit], and even greater daily extremes, compounded by high levels of humidity would ultimately seal our fate,” study co-author and University of Bristol paleoclimatologist Alexander Farnsworth said in a statement. “Humans—along with many other species—would expire due to their inability to shed this heat through sweat, cooling their bodies.”

The models in this study predict that CO2 levels would rise to between 410 parts per million and 816 parts per million in a few million years This is roughly the same as today’s level, which is already pushing the planet into dangerously hot water, or up to twice as high.

“They do explain quite nicely that it’s a combination of both those factors, kind of a double whammy situation,” geophysicist Ross Mitchell of the Chinese Academy of Sciences, who was not involved in the study, told Science magazine. “If there’s any disagreement I have with this paper, it’s that they’re more right than they thought they were.”

This prediction aligns well with Earth’s past periods of mass extinction and the volatile history of our planet. Here are some other times that mammalian and human life on Earth was almost completely wiped out.

The Pleistocene Ancestral Bottleneck

About 800,000 to 900,000 years ago, the population of human ancestors drastically dropped. A study published in August estimates that there were only about 1,280 breeding individuals alive during this transition between the early and middle Pleistocene. About 98.7 percent of the ancestral population was lost at the beginning of this ancestral bottleneck that lasted for roughly 117,000 years.

During this time, modern humans spread outside of the African continents and other early human species like Neanderthals began to go extinct. The Australian continent and the Americas also saw humans for the first time and the climate was generally cold. 

Some of the potential reasons behind this population drop are mostly related to extremes in climate. Temperatures changed, severe droughts persisted, and food sources may have dwindled as animals like mammoths, mastodons, and giant sloths went extinct. According to the study, an estimated 65.85 percent of current genetic diversity may have been lost due to this bottleneck.

[Related: We’re one step closer to identifying the first-ever mammals.]

The Great Dying

About 250 million years ago, massive volcanic eruptions triggered catastrophic climate changes that killed 80 to 90 percent of species on Earth. The Permian-Triassic mass extinction, or the “Great Dying,” paved the way for dinosaurs to dominate Earth, but was even worse than the Cretaceous–Paleogene extinction that wiped out the dinosaurs 66 million years ago.

According to a study published in May, saber-toothed creature called Inostrancevia filled a gap in southern Pangea’s ecosystem, when it was already devoid of top predators. Eventually, Inostrancevia also went extinct about 252 million years ago, as Earth’s species fought to gain a foothold on a changing planet. 

This example of how the past is prologue also bears a warning for our future, since the team says The Great Dying is the historical event that most closely parallels Earth’s current environmental crisis.

“Both involve global warming related to the release of greenhouse gasses, driven by volcanoes in the Permian and human actions currently,” study co-author museum curator and paleontologist Christian Kammerer told PopSci in May. “[They] represent a very rare case of rapid shifts between icehouse and hothouse Earth. So, the turmoil we observe in late Permian ecosystems, with whole sections of the food web being lost, represents a preview for our world if we don’t change things fast.”

The Ultimate Mammalian Survivor

Despite Earth constantly trying to kill us, life finds a way. Some of our very early ancestors potentially even shared a brief moment with Titanosaurs and the iconic Triceratops. These distant mammalian relatives also survived the Earth’s most famous mass extinction event: the Cretaceous-Paleogene (K-Pg) mass extinction that wiped out non-avian dinosaurs on a spring day about 66 million years ago.

[Related: This badger-like mammal may have died while trying to eat a dinosaur.]

A study published in June revealed that a Cretaceous origin for placental mammals, the diverse group that includes humans, dogs, and bats, briefly co-existed with dinosaurs. After an asteroid struck the Earth near Mexico’s Yucatán Peninsula, the devastation in its wake wiped out all of the non-avian dinosaurs and many mammals, such as a Madagascan rodent-looking animal named Vintana sertichi  that weighed up to 20 pounds Scientists have long debated if placental mammals were present with the dinosaurs before the Cretaceous-Paleogene (K-Pg) mass extinction, or if they only evolved after the dinosaurs died out. 

This study used statistical analysis that showed groups that include primates, rabbits and hares (Lagomorpha), and dogs and cats (Carnivora) evolved just before the K-Pg mass extinction and the impact that the modern lines of today’s placental mammals started to take shape after the asteroid hit. As with other mammals, they likely began to diversify once the dinosaurs were out of the picture.

The post A boiling hot supercontinent could kill all mammals in 250 million years appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How carrots get their trademark orange color https://www.popsci.com/health/orange-carrot-gene/ Thu, 28 Sep 2023 16:00:00 +0000 https://www.popsci.com/?p=575550
A row of organic orange carrots with their green stems still attached on a table.
While carrots come in many colors, orange carrots have been the most popular due to their sweetness and color. Deposit Photos

A surprisingly low number of recessive genes give the tasty root its signature hue.

The post How carrots get their trademark orange color appeared first on Popular Science.

]]>
A row of organic orange carrots with their green stems still attached on a table.
While carrots come in many colors, orange carrots have been the most popular due to their sweetness and color. Deposit Photos

Most nutritionists advise people to “eat the rainbow” to balance their diet—think greens like kale, purples like eggplant, reds like tomatoes.  Consuming nutritious and naturally occuring orange foods like carrots packed with vitamin A, fiber, antioxidants, and pigments called carotenoids is a must to get a full and healthy spectrum. Carotenoids even got their name because they were first isolated from carrots.  But what is exactly behind the bright hue of some of our favorite carrots? Only three specific genes are required to give orange carrots their signature color, according to a study published September 28 in the journal Nature Plants.

[Related: Carrots were once a crucial tool in anti-Nazi propaganda.]

In the study, a team from North Carolina State University and the University of Wisconsin-Madison looked at the genetic blueprints of more than 600 varieties of carrots. Surprisingly, they found that these three required genes all need to be recessive, or turned off.

“Normally, to make some function, you need genes to be turned on,” study co-author and North Carolina State University horticultural scientist Massimo Iorizzo said in a statement.  “In the case of the orange carrot, the genes that regulate orange carotenoids—the precursor of vitamin A that have been shown to provide health benefits—need to be turned off,” Iorizzo said. 

In 2016, this team sequenced the carrot genome for the first time and also uncovered the gene involved in the pigmentation of yellow carrot. For this new study, they sequenced 630 carrot genomes as part of a continuing study on the history and domestication of the crunchy root veggie.

The team performed selective sweeps, or structural analyses among five different carrot groups. During these sweeps, they looked for areas of the genome that are heavily selected in certain groups. They found that many of the genes involved in flowering were under selection, primarily to delay the flowering process. This event causes the edible root that we eat called the taproot to turn woody and inedible. 

“We found many genes involved in flowering regulation that were selected in multiple populations in orange carrot[s], likely to adapt to different geographic regions,” said Iorizzo. 

Additionally, the study created a general timeline of carrot domestication and found more evidence that carrots were domesticated in the 9th or 10th century CE in western and central Asia. 

“Purple carrots were common in central Asia along with yellow carrots. Both were brought to Europe, but yellow carrots were more popular, likely due to their taste,” said Iorizzo.

[Related: WTF are purple carrots and where did they come from?]

In about the 15th or 16th century, orange carrots made their appearance in western Europe, potentially as the result of crossing a yellow carrot with a white one. The bright color and sweet flavor of orange carrots likely made it more popular than other varieties, so farmers continued selecting for them. In northern Europe, different types of orange carrots were developed in the 16th and 17th centuries and orange carrots of various shades can be seen in paintings from that area. They continued to grow in popularity as more understanding about the importance of alpha- and beta-carotenes and vitamin A in the diet for eye health progressed in the late 19th and early 20th centuries. 

The findings in this study shed more light on the traits that are important to improving carrots and could lead to better health benefits from the nutritious vegetable.

The post How carrots get their trademark orange color appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How many ancient humans does it take to fight off a giant hyena? https://www.popsci.com/science/human-hyena-scavenger-pleistocene/ Thu, 28 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=575558
A hyenea shows its jaws. Giant hyenas went extinct about 500,000 years ago, but were roughly 240 pounds and skilled scavengers like their modern counterparts.
Giant hyenas went extinct about 500,000 years ago, but were roughly 240 pounds and skilled scavengers like their modern counterparts. Deposit Photos

During the Pleistocene, competition was tough even for scraps.

The post How many ancient humans does it take to fight off a giant hyena? appeared first on Popular Science.

]]>
A hyenea shows its jaws. Giant hyenas went extinct about 500,000 years ago, but were roughly 240 pounds and skilled scavengers like their modern counterparts.
Giant hyenas went extinct about 500,000 years ago, but were roughly 240 pounds and skilled scavengers like their modern counterparts. Deposit Photos

One of the most enduring mysteries about our earliest ancestors and extinct human relatives is how they ate and procured enough food to sustain themselves millions of years ago. We believe that archery first arrived in Europe about 54,000 years ago and Neanderthals were cooking and eating crab about 90,000 years ago, but scavenging was likely necessary to get a truly hearty meal. A modeling study published September 28 in the journal Scientific Reports found that groups of hominins roughly 1.2 to 0.8 million years ago in southern Europe may have been able to compete with giant hyenas for carcasses of animals abandoned by larger predators like saber-toothed cats.

[Related: An ‘ancestral bottleneck’ took out nearly 99 percent of the human population 800,000 years ago.]

Earlier research has theorized that the number of carcasses abandoned by saber-toothed cats may have been enough to sustain some of southern Europe’s early hominin populations. However, it’s been unclear if competition from giant hyenas (Pachycrocuta brevirostris) would have limited hominin access to this food source. These extinct mongoose relatives were about 240 pounds–roughly the size of a lioness–and went extinct about 500,000 years ago. 

“There is a hot scientific debate about the role of scavenging as a relevant food procurement strategy for early humans,” paleontologist and study co-author Jesús Rodríguez from the National Research Center On Human Evolution (CENIEH) in Burgos, Spain tells PopSci. “Most of the debate is based on the interpretation of the scarce and fragmentary evidence provided by the archaeological record. Without denying that the archaeological evidence should be considered the strongest argument to solve the question, our intention was to provide elements to the debate from a different perspective.”

For this study, Rodríguez and co-author Ana Mateos looked at the Iberian Peninsula in the late-early Pleistocene era. They ran computer simulations to model competition for carrion–the flesh of dead animals–between hominins and giant hyenas in what is now Spain and Portugal. They simulated whether saber-toothed cats and the European jaguar could have left enough carrion behind to support both hyena and hominin populations—and how this may have been affected by the size of scavenging groups of hominins. 

They found that when hominins scavenged in groups of five or more, these groups could have been large enough to chase away giant hyenas. The hominin populations also exceeded giant hyena populations by the end of these simulations. However, when the hominins scavenged in very small groups, they could only survive to the end of the simulation when the predator density was high, which resulted in more carcasses to scavenge.  

[Related: Mysterious skull points to a possible new branch on human family tree.]

According to their simulations, the potential optimum group size for scavenging hominins was just over 10 individuals. This size was large enough to chase away saber-toothed cats and jaguars. However, groups of more than 13 individuals would have likely required more carcasses to sustain their energy expenditure. The authors caution that their simulations couldn’t specify this exact “just right” group size, since the numbers of hominins needed to chase away hyenas, saber-toothed cats, and jaguars were pre-determined and arbitrarily assigned.

“The simulations may not determine the exact value of the optimum, but show that it exists and depends on the number of hominins necessary to chase away the hyenas and of the size of the carcasses,” says Rodríguez.

Scavenged remains may have been an important source of meat and fat for hominins, especially in winter when plant resources were scarce. This team is working on simulating the opportunities hominins had for scavenging in different ecological scenarios in an effort to change a view that scavenging is marginal and that hunting is a more “advanced” and more “human” behavior than scavenging. 

“The word for scavenger in Spanish is ‘carroñero.’ It has a negative connotation, and is frequently used as an insult. We do not share that view,” says Rodríguez. “Scavengers play a very important role in ecosystems, as evidenced by the ecological literature in the last decades. We view scavenging as a product of the behavioral flexibility and cooperative abilities of the early hominins.”

The post How many ancient humans does it take to fight off a giant hyena? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A fossilized trilobite stomach can show us clues to Cambrian cuisine https://www.popsci.com/environment/trilobite-fossil-stomach/ Wed, 27 Sep 2023 15:30:00 +0000 https://www.popsci.com/?p=575001
An illustration of Bohemolichas feeding on the seafloor, moments before it is engulfed, buried, and preserved by an underwater mud flow.
An illustration of Bohemolichas feeding on the seafloor, moments before it is engulfed, buried, and preserved by an underwater mud flow. Jiri Svoboda

The 465-million-year-old gut contents reveal similarities between the ancient arthropod and modern crabs.

The post A fossilized trilobite stomach can show us clues to Cambrian cuisine appeared first on Popular Science.

]]>
An illustration of Bohemolichas feeding on the seafloor, moments before it is engulfed, buried, and preserved by an underwater mud flow.
An illustration of Bohemolichas feeding on the seafloor, moments before it is engulfed, buried, and preserved by an underwater mud flow. Jiri Svoboda

About 465 million years ago, a now extinct arthropod called a trilobite was eating its way across the present day Czech Republic. After it died, the passage of time actually preserved the plentiful contents of this specimen’s prehistoric guts. A team of paleontologists is using this full fossilized belly to learn more about the feeding habits and lifestyle of these common fossilized arthropods. The findings are detailed in a study published September 27 in the journal Nature.

[Related: Trilobites may have jousted with head ‘tridents’ to win mates.]

More than 20,000 species of trilobite lived during the early Cambrian to the end-Permian period roughly 541 to 252 million years ago. They are some of the most common fossil specimens from this time period, yet paleontologists do not know much about their feeding habits since gut contents usually disappear over time, and until recently there were no known fossil specimens with them intact.

In the study, a team from institutions in Sweden and the Czech Republic examined a fossil specimen of Bohemolichas incola first uncovered near Prague over 100 years ago. Study co-author and paleontologist Petr Kraft from Charles University in Prague had long suspected that this specimen may have a gut full of food intact, but did not have a suitable technique to look inside the trilobite’s innards. Study co-authors and paleontologists Valéria Vaskaninova and Per Ahlberg from Uppsala University in Sweden suggested using a synchrotron in one of their fossil scanning sessions. This machine is a large electron accelerator that produces powerful laser-like x-rays to take high-quality scans of the fossil

“The results were fantastic, showing all the gut contents in detail so that we could identify what the trilobite had been eating,” Ahlberg tells PopSci. “Remains of ostracods (small shell-bearing crustaceans, still around today), hyoliths (extinct cone-shaped animals of uncertain affinities) and stylophorans (extinct echinoderms that look like little armor-plated electric guitars). These are all kinds of animals that lived in the local environment.”

The team believes that Bohemolichas incola was likely an opportunistic scavenger. It also was potentially a light crusher and a chance feeder, which means that it ate both dead or living animals, which either disintegrated easily or were actually small enough to be swallowed whole. However, after this particular Bohemolichas incola died, the circle of life continued and the scavenger became the scavenged. Vertical tracks of other scavengers were found on the specimen. These unknown creatures burrowed into this trilobite’s carcass and targeted its soft tissue, but avoided its gut. Staying away from the gut implies that there were some noxious conditions inside Bohemolichas incola’s digestive system and potentially ongoing enzymatic activity.

[Related: These ancient trilobites are forever frozen in a conga line.]

“We were able to draw conclusions about the chemical environment inside the gut of the living trilobite. The shell fragments on the gut have not been etched by stomach acids, and this shows that the gut pH must have been close to neutral, similar to the condition in modern crabs and horseshoe crabs,” says Ahlberg. “This may indeed be a very ancient shared characteristic of trilobites and these modern arthropods.”

Future studies into trilobites could use similar techniques to look for more gut fills. Since this group is a very diverse group of animals, it can’t be assumed that this particular species is representative of the feeding habits for all. 

“This project shows how cutting-edge technology can come together with really old museum specimens. The trilobite was collected in 1908, and has been in a museum ever since, but it is only now that we have the technology to unlock its secrets,” says Ahlberg. “This illustrates not only the rapid technological progress of our time, but also the importance of well-maintained museum collections.”

The post A fossilized trilobite stomach can show us clues to Cambrian cuisine appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mysterious ‘fairy circles’ may appear on three different continents https://www.popsci.com/science/fairy-circles-desert-ai/ Wed, 27 Sep 2023 14:00:00 +0000 https://www.popsci.com/?p=575087
Aerial view of a hot air balloon over Namib desert. The circular “fairy circles” are derived from any vegetation & surrounded by tall grass.
Aerial view of a hot air balloon over Namib desert. The circular “fairy circles” are derived from any vegetation & surrounded by tall grass. Getty Images

Researchers used AI to comb the world's deserts for the natural phenomena, but debate continues.

The post Mysterious ‘fairy circles’ may appear on three different continents appeared first on Popular Science.

]]>
Aerial view of a hot air balloon over Namib desert. The circular “fairy circles” are derived from any vegetation & surrounded by tall grass.
Aerial view of a hot air balloon over Namib desert. The circular “fairy circles” are derived from any vegetation & surrounded by tall grass. Getty Images

The natural circles that pop up on the soil in the planet’s arid regions are an enduring scientific debate and mystery. These “fairy circles” are circular patterns of bare soil surrounded by plants and vegetation. Until very recently, the unique phenomena have only been described in the vast Namib desert and the Australian outback. While their origins and distribution are hotly debated, a study with satellite imagery published on September 25 in the journal Proceedings of the National Academy of Sciences (PNAS) indicates that fairy circles may be more common than once realized. They are potentially found in 15 countries across three continents and in 263 different sites. 

[Related: A new study explains the origin of mysterious ‘fairy circles’ in the desert.]

These soil shapes occur in arid areas of the Earth, where nutrients and water are generally scarce. Their signature circular pattern and hexagonal shape is believed to be the best way that the plants have found to survive in that landscape. Ecologist Ken Tinsly observed the circles in Namibia in 1971, and the story goes that he borrowed the name fairy circles from a naturally occurring ring of mushrooms that are generally found in Europe.

By 2017, Australian researchers found the debated western desert fairy circles, and proposed that the mechanisms of biological self-organization and pattern formation proposed by mathematician Alan Turing were behind them. In the same year, Aboriginal knowledge linked those fairy circles to a species of termites. This “termite theory” of fairy circle origin continues to be a focus of research—a team from the University of Hamburg in Germany published a study seeming to confirm that termites are behind these circles in July.

In this new study, a team of researchers from Spain used artificial intelligence-based models to look at the fairy circles from Australia and Namibia and directed it to look for similar patterns. The AI scoured the images for months and expanded the areas where these fairy circles could exist. These locations include the circles in Namibia, Western Australia, the western Sahara Desert, the Sahel region that separates the African savanna from the Sahara Desert, the Horn of Africa to the East, the island of Madagascar, southwestern Asia, and Central Australia.

DCIM\101MEDIA\DJI_0021.JPG
Fairy circles on a Namibian plain. CREDIT: Audi Ekandjo.

The team then crossed-checked the results of the AI system with a different AI program trained to study the environments and ecology of arid areas to find out what factors govern the appearance of these circular patterns. 

“Our study provides evidence that fairy-circle[s] are far more common than previously thought, which has allowed us, for the first time, to globally understand the factors affecting their distribution,” study co-author and Institute of Natural Resources and Agrobiology of Seville soil ecologist Manuel Delgado Baquerizo said in a statement

[Related: The scientific explanation behind underwater ‘Fairy Circles.’]

According to the team, these circles generally appear in arid regions where the soil is mainly sandy, there is water scarcity, annual rainfall is between 4 to 12 inches, and low nutrient continent in the soil.

“Analyzing their effects on the functioning of ecosystems and discovering the environmental factors that determine their distribution is essential to better understand the causes of the formation of these vegetation patterns and their ecological importance,” study co-author and  University of Alicante data scientist Emilio Guirado said in a statement

More research is needed to determine the role of insects like termites in fairy circle formation, but Guirado told El País that “their global importance is low,” and that they may play an important role in local cases like those in Namibia, “but there are other factors that are even more important.”

The images are now included in a global atlas of fairy circles and a database that could help determine if these patterns demonstrate resilience to climate change. 

“We hope that the unpublished data will be useful for those interested in comparing the dynamic behavior of these patterns with others present in arid areas around the world,” said Guirado.

The post Mysterious ‘fairy circles’ may appear on three different continents appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The mathematical theory that connects swimming sperm, zebra stripes, and sunflower seeds https://www.popsci.com/science/alan-turing-pattern-zebra-sperm/ Wed, 27 Sep 2023 13:00:00 +0000 https://www.popsci.com/?p=574986
A close up of the black and white stripes of a zebra. The same patterns that dictate zebra stripes could also control the way sperm swim.
Recognizable patterns in nature may appear spontaneously when chemicals within the objects or organisms diffuse and then react together. Deposit Photos

Scientists inch closer to understanding the very basis of nature’s patterns.

The post The mathematical theory that connects swimming sperm, zebra stripes, and sunflower seeds appeared first on Popular Science.

]]>
A close up of the black and white stripes of a zebra. The same patterns that dictate zebra stripes could also control the way sperm swim.
Recognizable patterns in nature may appear spontaneously when chemicals within the objects or organisms diffuse and then react together. Deposit Photos

In nature, patterns of chemical interactions between two different substances are believed to govern the designs our eyes see—for example, a zebra’s stripes. These stripey designs are governed by a mathematical basis that is potentially overseeing another completely unrelated thing—the wavy patterns formed by sperm’s motion. According to a study published September 27 in the journal Nature Communications, the same mathematical theory could traverse both.

[Related: Monarch butterflies’ signature color patterns could inspire better drone design.]

To understand the connection, we need to go back more than 70 years. The wavy undulations of a sperm’s tail—or flagella—make striped patterns in space-time. These patterns potentially follow the same template proposed by mathematician Alan Turing, one of the most famous scientists of the 20th century. Turing is most well-known for helping crack the enigma code during World War II and ushering in a new age of computer science, but he also developed a theory informally called the reaction-diffusion theory for pattern formation. This 1952 theory predicted that recognizable patterns in nature may appear spontaneously when chemicals within the objects or organisms diffuse and then react together.

While this theory hasn’t been well proven by experimental evidence, Turing’s theory sparked more research into using reaction-diffusion mathematics as a way to understand natural patterns. These so-called Turing patterns are believed to govern leopard spots, whorls of seeds in sunflower heads, and even patterns of sand on the beach. 

In this new study, a team from the University of Bristol in England used Turing patterns as a way to look at the movement of sperm’s flagella and vibrating hair-like cells called cilia. 

“Live spontaneous motion of flagella and cilia is observed everywhere in nature, but little is known about how they are orchestrated,” study co-author and mathematician Hermes Gadêlha said in a statement. “They are critical in health and disease, reproduction, evolution, and survivorship of almost every aquatic microorganism [on] earth.”

Flagellar undulations are believed to make stripe patterns in space-time, in the form of the waves that travel along the tail to drive the sperm forward when it is in fluid. To look deeper, Gadêlha and his team used mathematical modeling, simulations, and data fitting to show that wavy flagellar movement can actually arise spontaneously without the influence of the fluid in their environment. According to the team, this is mathematically equivalent to Turing’s reaction-diffusion system that was first proposed for chemical patterns over 70 years ago.

For the swimming sperm, chemical reactions of molecular motors power its tail and the bending movement diffuses along the tail in waves. The fluid itself is playing a very minor role on how the tail moves.

[Related: The genes behind your fingerprints just got weirder.]

“We show that this mathematical ‘recipe’ is followed by two very distant species—bull sperm and Chlamydomonas (a green algae that is used as a model organism across science), suggesting that nature replicates similar solutions,” said Gadêlha. “Traveling waves emerge spontaneously even when the flagellum is uninfluenced by the surrounding fluid. This means that the flagellum has a fool-proof mechanism to enable swimming in low viscosity environments, which would otherwise be impossible for aquatic species. It is the first time that model simulations compare well with experimental data.”

The findings of this study could help understand fertility issues associated with abnormal flagellar motion, diseases caused by ineffective cilia, and be applied to robotics. Other models in nature may exist that could provide further experimental proof of Turing’s template, but more research is needed.  

The post The mathematical theory that connects swimming sperm, zebra stripes, and sunflower seeds appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
JWST just scanned the skies of potentially habitable exoplanet TRAPPIST-1 b https://www.popsci.com/science/jwst-trappist-atmosphere-spectroscopy/ Tue, 26 Sep 2023 18:16:40 +0000 https://www.popsci.com/?p=574707
An artistic representation of the TRAPPIST-1 red dwarf star, featuring its very active nature. Exoplanet TRAPPIST-1 b is the closest planet to the system’s central star and is featured in the foreground with no apparent atmosphere. The exoplanet TRAPPIST-1 g is in the background to the right of the star.
An artistic representation of the TRAPPIST-1 red dwarf star, featuring its very active nature. Exoplanet TRAPPIST-1 b is the closest planet to the system’s central star and is featured in the foreground with no apparent atmosphere. The exoplanet TRAPPIST-1 g is in the background to the right of the star. Benoît Gougeon/Université de Montréal

We now know more about the atmospheres of an Earth-like exoplanet.

The post JWST just scanned the skies of potentially habitable exoplanet TRAPPIST-1 b appeared first on Popular Science.

]]>
An artistic representation of the TRAPPIST-1 red dwarf star, featuring its very active nature. Exoplanet TRAPPIST-1 b is the closest planet to the system’s central star and is featured in the foreground with no apparent atmosphere. The exoplanet TRAPPIST-1 g is in the background to the right of the star.
An artistic representation of the TRAPPIST-1 red dwarf star, featuring its very active nature. Exoplanet TRAPPIST-1 b is the closest planet to the system’s central star and is featured in the foreground with no apparent atmosphere. The exoplanet TRAPPIST-1 g is in the background to the right of the star. Benoît Gougeon/Université de Montréal

About 40 light years away, a system of seven Earth-sized planets orbit a star that is much cooler and smaller than our sun— the exoplanetary system called TRAPPIST-1. When these exoplanets were discovered in 2016, astronomers speculated that they could one day support humans. Three of those worlds are located in the star’s habitable zone, also called the “Goldilocks zone,” where the conditions for life could be “just right.” Now, astronomers using the James Webb Space Telescope (JWST) have made important progress in understanding the atmosphere of one of its potentially habitable planets.

[Related: JWST’s double take of an Earth-sized exoplanet shows it has no sky.]

JWST observations ruled out the possibilities for a clear, extended atmosphere, failing to detect elements such as hydrogen. The telescope’s new detections also cut through the interference of the star at the center of this system, avoiding what astronomers call stellar contaminations. The findings are detailed in a study published September 22 in The Astrophysical Journal Letters.

The new study specifically sheds light on the nature TRAPPIST-1 b, the exoplanet that is closest to the system’s central star. The team from institutions in the United States and Canada used the JWST’s NIRISS instrument to observe TRAPPIST-1 b during two transits, when the planet passed in front of its star. 

An illustration shows what the TRAPPIST-1 planetary system may look like, based on available data about the planets’ diameters, masses, and distances from the host star. CREDIT: NASA/JPL-Caltech
An illustration shows what the TRAPPIST-1 planetary system may look like, based on available data about the planets’ diameters, masses, and distances from the host star. CREDIT: NASA/JPL-Caltech

The team used a technique called transmission spectroscopy to look deeper into the distant world. They saw the unique fingerprint left by the molecules and atoms that were found within the exoplanet’s atmosphere. “These are the very first spectroscopic observations of any TRAPPIST-1 planet obtained by the JWST, and we’ve been waiting for them for years,” study co-author and Université de Montréal doctoral student Olivia Lim said in a statement

In the past, stars at the center of solar systems may have hampered our understanding of far-off atmospheres. That’s because these suns can create “ghost signals” which fool observers into thinking they are seeing a particular molecule in the exoplanet’s atmosphere. This phenomenon, stellar contamination, is the influence of a star’s own features on the measurements of an exoplanet’s atmosphere.  A sun’s dark spots and bright faculae, or bright spots on its surface, can warp the chemical fingerprints that telescopes detect.

“In addition to the contamination from stellar spots and faculae, we saw a stellar flare, an unpredictable event during which the star looks brighter for several minutes or hours,” said Lim. “This flare affected our measurement of the amount of light blocked by the planet. Such signatures of stellar activity are difficult to model but we need to account for them to ensure that we interpret the data correctly.”

The team also used the observations to explore a range of atmospheric models for TRAPPIST-1 b. They ruled out the existence of cloud-free, hydrogen-rich atmospheres, which means that TRAPPIST-1 b likely does not have a clear and extended atmosphere around it. However, the data could not confidently rule out the possibility of a thinner atmosphere, perhaps made up of pure water, carbon dioxide, or methane

[Related: The James Webb Space Telescope just identified its first exoplanet.]

According to the team, this result underscores the importance of taking stellar contamination into account when planning future observations of all exoplanetary systems. This consideration is especially true for systems like TRAPPIST-1, because the system is centered around a red dwarf star which can be particularly active with frequent flare events and dark spots.

More observations will be needed to determine exactly what kind of atmosphere is surrounding this exoplanet and if it could support human life. “This is just a small subset of many more observations of this unique planetary system yet to come and to be analyzed,” study co-author and Université de Montréal astronomer René Doyon said in a statement. “These first observations highlight the power of NIRISS and the JWST in general to probe the thin atmospheres around rocky planets.”

The post JWST just scanned the skies of potentially habitable exoplanet TRAPPIST-1 b appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Meet the first electric blue tarantula known to science https://www.popsci.com/environment/meet-the-first-electric-blue-tarantula-known-to-science/ Tue, 26 Sep 2023 16:00:00 +0000 https://www.popsci.com/?p=574604
A tarantula with a mostly black body, but bright blue legs and pincers. Chilobrachys natanicharum is the first tarantula species found in Thailand’s mangrove trees. CREDIT: Yuranan Nanthaisong/ZooKeys.
Chilobrachys natanicharum is the first tarantula species found in Thailand’s mangrove trees. CREDIT: Yuranan Nanthaisong/ZooKeys. Yuranan Nanthaisong/ZooKeys

The new tarantula species, with its extremely rare color, was found in a mangrove tree in Thailand.

The post Meet the first electric blue tarantula known to science appeared first on Popular Science.

]]>
A tarantula with a mostly black body, but bright blue legs and pincers. Chilobrachys natanicharum is the first tarantula species found in Thailand’s mangrove trees. CREDIT: Yuranan Nanthaisong/ZooKeys.
Chilobrachys natanicharum is the first tarantula species found in Thailand’s mangrove trees. CREDIT: Yuranan Nanthaisong/ZooKeys. Yuranan Nanthaisong/ZooKeys

Scientists in Thailand have discovered a new species of tarantula with a very unique blue hue. The tarantula is named Chilobrachys natanicharum and is also called the electric blue tarantula. The findings were described in a study published September 18 in the journal ZooKeys 

[Related: Before spider mites mate, one of them gets their skin removed.]

The new colorful arachnid was discovered in southern Thailand’s Phang-Nga province. It follows the identification of another new species of tarantula called Taksinus bambus, or the bamboo culm tarantula.

“In 2022, the bamboo culm tarantula was discovered, marking the first known instance of a tarantula species living inside bamboo stalks,” study co-author and Khon Kaen University entomologist Narin Chomphuphuang said in a statement. “Thanks to this discovery, we were inspired to rejoin the team for a fantastic expedition, during which we encountered a captivating new species of electric blue tarantula.”

The team that found the first not-so-blue bamboo culm tarantula included a local wildlife YouTuber named JoCho Sippawat. This year, Chomphuphuang joined up with Sippawat for a surveying expedition in the province to learn more about tarantula diversity and distribution. They identified this new species by this very distinctive coloration during the expedition.

“The first specimen we found was on a tree in the mangrove forest. These tarantulas inhabit hollow trees, and the difficulty of catching an electric-blue tarantula lies in the need to climb a tree and lure it out of a complex of hollows amid humid and slippery conditions,” Narin said. “During our expedition, we walked in the evening and at night during low tide, managing to collect only two of them.”

Chilobrachys natanicharum has blue coloring due to the unique structure of its hair and not the presence of blue pigments. CREDIT: Yuranan Nanthaisong
Chilobrachys natanicharum has blue coloring due to the unique structure of its hair and not the presence of blue pigments. CREDIT: Yuranan Nanthaisong

The color blue is very rare in nature. It can even exist in other animals that aren’t usually this color, including the blue lobsters that have recently been found in Massachusetts and France. Some animals also evolved wild colors including blues, yellows, and reds to appear poisonous to try and keep other animals from eating them.  

In order for an organism to appear blue, it must absorb very small amounts of energy while reflecting high-energy blue light. Since penetrating molecules that are capable of absorbing this energy is a complex process, the color blue is less common than other colors in the natural world. 

According to the study, the secret behind the electric blue tarantula’s wild color comes from the unique structure of their hair and not from a presence of blue pigment. Their hair incorporates nanostructures that manipulate the light shining on it to create the blue appearance. Their hair can also display a more violet hue depending on the light, which creates an iridescent effect. 

[Related: Blue-throated macaws are making a slow, but hopeful, comeback.]

This species was previously found on the commercial tarantula market, but there hadn’t been any documentation describing its natural habitat or unique features. 

“The electric blue tarantula demonstrates remarkable adaptability. These tarantulas can thrive in arboreal as well as terrestrial burrows in evergreen forests,” Narin said. “However, when it comes to mangrove forests, their habitat is restricted to residing inside tree hollows due to the influence of tides.”

To name the new species, the authors conducted an auction campaign and the scientific name of Chilobrachys natanicharum was selected. It is named after executives Natakorn and Nichada Changrew of Nichada Properties Co., Ltd., Thailand and the proceeds of the auction were donated to support the education of Indigenous Lahu children in Thailand and for cancer patients in need of money for treatment.

CREDIT: JoCho Sippawat/Pensoft Publishers.

The authors say that this discovery points to the continued importance of taxonomy as a basic aspect of research and conservation. It also highlights the need to protect mangrove forests from continued deforestation, as the electric blue tarantula is also one of the world’s rarest tarantulas. 

“This raises a critical question: Are we unintentionally contributing to the destruction of their natural habitats, pushing these unique creatures out of their homes?” the researchers ask in their conclusion.

The post Meet the first electric blue tarantula known to science appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Earth’s stinkiest flower is threatened with extinction https://www.popsci.com/environment/earths-stinkiest-flower-extinction/ Mon, 25 Sep 2023 18:15:00 +0000 https://www.popsci.com/?p=574123
Rafflesia kemumu in the rainforest of Sumatra.
Rafflesia kemumu in the rainforest of Sumatra. Flowers in the Rafflesia genus are some of the world's largest, but also smelliest. Chris Thorogood

Rafflesia, which smells like rotting flesh, is facing habitat loss.

The post Earth’s stinkiest flower is threatened with extinction appeared first on Popular Science.

]]>
Rafflesia kemumu in the rainforest of Sumatra.
Rafflesia kemumu in the rainforest of Sumatra. Flowers in the Rafflesia genus are some of the world's largest, but also smelliest. Chris Thorogood

As their giant petals open, the blooming of flowers in the genus Rafflesia brings with them an overwhelming odor mimics the smell of rotting flesh. While their pungent stink might keep humans away and attract flies, a study published September 19 in the journal Plants People Planet found that 67 percent of the habitats for these notorious plants is at risk of destruction. 

[Related: Corpse flowers across the country are swapping pollen to stay stinky.]

Rafflesia are the largest flowers in the world and have been a botanical enigma for centuries. In addition to their infamous stink, corpse flowers are actually a parasite that infects vines in the tropical jungles of Thailand, Indonesia, Malaysia, Brunei, and the Philippines. It remains hidden from sight for the majority of its lifecycle, existing as a system of tiny thread-like filaments that invades its host. At unpredictable intervals, the parasite produces a cabbage-like bud that will break through a vine’s bark and eventually form a giant, five-lobed flower, up to 3.2 feet across. The flower produces its signature rotten meat smell to attract pollinating flies.

This elusive lifecycle and ability to remain hidden makes them very poorly understood by botanists, and new species are still being discovered by botanists. With such an elusive lifecycle, Rafflesia remains poorly understood, and new species are still being recorded. 

In the study, an international group of researchers established the first coordinated global network to assess the threats facing Rafflesia. This network found most of the 42 known species of Rafflesia are severely threatened, but only one is listed on the IUCN’s Red List of Threatened Species. This leaves many unprotected by regional or national conservation strategies. The scientists classified 25 species as Critically Endangered and 15 as Endangered, according to the IUCN’s criteria for classification

Rafflesia bengkuluensis with its custodians in Sumatra. CREDIT: Chris Thorogood
Rafflesia bengkuluensis with its custodians in Sumatra. CREDIT: Chris Thorogood

Chris Thorogood of the University of Oxford Botanic Garden in England co-authored the study and an upcoming book on the team’s years devoted to documenting these plants. In a statement, Thorogood said that this work, “Highlights how the global conservation efforts geared towards plants–however iconic–have lagged behind those of animals. We urgently need a joined-up, cross-regional approach to save some of the world’s most remarkable flowers, most of which are now on the brink of being lost.”

Additionally, Rafflesia species often have very restricted geographical distributions, making them particularly vulnerable to habitat destruction. Many of the remaining populations of corpse flowers have only a few individuals in unprotected areas that are at risk of being converted for agricultural use, according to the study. While these and other similarly smelly flowers famously exist in some botanical gardens, these institutions have had limited success in breeding them, making habitat conservation an urgent priority.

[Related: These parasitic plants force their victims to make them dinner.]

The four-point action plan proposed by the team for local governments, research centers, and conservation organizations  includes greater habitat protections, better understanding of the full diversity of the Rafflesia that exists to better inform policy making, developing better methods to breed them outside their native habitat, and introducing new ecotourism initiatives to engage local communities in Rafflesia conservation.

The study also highlighted some valuable success stories that may offer important insights for Rafflesia conservation elsewhere, including the Bogor Botanic Garden in West Java, Indonesia, that saw a series of successful blooming events and villagers in West Sumatra benefitting from Rafflesia ecotourism by forming “pokdarwis” or tourism awareness groups linked to social media.

“Indigenous peoples are some of the best guardians of our forests, and Rafflesia conservation programmes are far more likely to be successful if they engage local communities,” Adriane Tobias, a study co-author and forester from the University of the Philippines Los Baños, said in a statement. “Rafflesia has the potential to be a new icon for conservation in the Asian tropics.”

The post Earth’s stinkiest flower is threatened with extinction appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Substance use disorder may be connected to a specific brain circuit https://www.popsci.com/health/brain-network-addiction-substance-use-disorder/ Mon, 25 Sep 2023 16:30:00 +0000 https://www.popsci.com/?p=573969
An MRI scan of a human brain on a screen. Scanning the brain can help clinicians find abnormalities and the links between them.
An MRI scan of a human brain on a screen. Scanning the brain can help clinicians find abnormalities and the links between them. Getty Images

The network includes five primary areas of the brain and could inform future clinical treatments for drug addiction.

The post Substance use disorder may be connected to a specific brain circuit appeared first on Popular Science.

]]>
An MRI scan of a human brain on a screen. Scanning the brain can help clinicians find abnormalities and the links between them.
An MRI scan of a human brain on a screen. Scanning the brain can help clinicians find abnormalities and the links between them. Getty Images

Treating substance use disorders is incredibly challenging. One reason is that the brain scans showing abnormalities in those with addiction often include a lot of varying results and lack of connections. Now, a study published September 25 in the journal Nature Mental Health found that the brains of those with a substance use disorder have a connected circuit, giving researchers some potential places to target in future clinical treatments.

[Related: A powerful combo of psilocybin and therapy might help people overcome alcohol use disorder.]

According to the United States Substance Abuse and Mental Health Services Administration, substance use disorders occur when someone’s recurrent use of alcohol and/or drugs causes them significant health problems, including “disability, and failure to meet major responsibilities at work, school, or home.” In the United States, more than 20 million individuals are estimated to have substance use disorders and some common disorders are opioid use disorder, nicotine use disorder, and alcohol use disorder.

Brain scans or neuroimaging can help inform treatment options, since abnormalities in brain scans are associated with substance use disorders. Some newly developed approaches to study the brain’s role in addiction include a process called brain lesion network mapping. Brain lesions are areas of brain tissue that show damage from injury or disease. Lesion network mapping examines how two lesions in two different sites can cause the same issues. 

“We can think of that as an average wiring diagram of the human brain in order to show how two lesions in two different sites that both cause the same issue actually share connectivity to the same region,” study co-author and University of British Columbia medical student Jacob Stubbs tells PopSci

The mapping helped researchers to notice that this network was common across people who have been consuming different addictive substances including alcohol, cocaine, heroin, or nicotine. According to Stubbs, the team was actually quite surprised to find this common circuit across substances given the limitations and amount of diversity in decades of data.

Some of the study’s limitations are that the data all came from previous research and that the findings are correlative. The authors could not conclude any causation or if this circuit is hereditary or environmental. Additionally, there are multiple ways to study brain imaging, which can make looking at the data even more complicated and noisy.

A 2022 study mapped brain lesions to a circuit in the brain that can actually make the lesions go away in the brains of some cigarette smokers. This new study used that data to evaluate this newly discovered brain circuit and areas where the brain had atrophied, or shrunk. It evaluated data from 144 studies on addiction and found that abnormalities across substance use disorder are in a common brain network. The studies primarily looked at alcohol, cocaine, heroin, or nicotine addiction. 

“Our study found that different brain regions implicated in addiction are all a part of a common brain circuit,” study co-author Michael Fox, founding director of the Center for Brain Circuit Therapeutics at Brigham and Women’s Hospital, said in a statement. “Consistency across different papers means we now have a brain circuit to target addiction with treatments, rather than just a region.” (Fox is a consultant for Magnus Medical, Solaris, and Boston Scientific and has intellectual property using connectivity imaging to guide brain stimulation.)

[Related: We probably have big brains because we got lucky.]

The team reviewed data involving more than 9,000 participants. The newly uncovered connection suggests a potential brain circuit that could be targeted neurostimulation therapies to treat substance use disorders. 

The circuit involves five primary areas of the brain–the anterior cingulate, insula, dorsolateral prefrontal cortex, thalamus, and medial prefrontal cortex.

“The five regions that pop up are places that actually do make some amount of intuitive sense. The medial prefrontal cortex is the strip of cortex that goes right down the front of your brain and it’s important because it’s been a target for successful neurostimulation trials,” says Stubbs.

While clinical applications using this circuit are still several years away, it offers some promise.

The post Substance use disorder may be connected to a specific brain circuit appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The deepest known ocean virus lives under 29,000 feet of water https://www.popsci.com/environment/deepest-virus/ Mon, 25 Sep 2023 13:30:00 +0000 https://www.popsci.com/?p=573884
A high-density field of corals, including the spiraling Iridogorgia magnispiralis. Image courtesy of the NOAA Office of Ocean Exploration and Research, 2016 Deepwater Exploration of the Marianas.
A high-density field of corals, including the spiraling Iridogorgia magnispiralis. Image courtesy of the NOAA Office of Ocean Exploration and Research, 2016 Deepwater Exploration of the Marianas. NOAA

The newly discovered virus vB_HmeY_H4907 lurks in the Mariana Trench.

The post The deepest known ocean virus lives under 29,000 feet of water appeared first on Popular Science.

]]>
A high-density field of corals, including the spiraling Iridogorgia magnispiralis. Image courtesy of the NOAA Office of Ocean Exploration and Research, 2016 Deepwater Exploration of the Marianas.
A high-density field of corals, including the spiraling Iridogorgia magnispiralis. Image courtesy of the NOAA Office of Ocean Exploration and Research, 2016 Deepwater Exploration of the Marianas. NOAA

Marine virologists have found a novel virus living in the incredibly deep and dark Mariana Trench, more than 29,000 feet under the ocean’s surface. The virus is the deepest known isolated bacteriophage—viruses that infect and replicate inside bacteria—ever found, according to a study published September 20 in the journal Microbiology Spectrum.

[Related: Meet the marine geologist mapping the deepest point on Earth.]

The enormous trench in the western Pacific Ocean near Guam is over 36,000 feet deep at its lowest depth and is part of the hadal zone. This zone is named for Hades, the Greek god of the underworld, for its deep trenches and high pressures. The buildup of carbon along the base of the hadal zone’s trenches may even help regulate the Earth’s climate and carbon cycle. Even in its intense pressures and extreme cold and darkness, life continues to find a way. Scientists have discovered fish, shrimp, and lots of microbes lurking there. That life includes regulators to keep the living things in check. 

“Wherever there’s life, you can bet there are regulators at work. Viruses, in this case,” study co-author and Ocean University of China marine virologist Min Wang said in a statement.

This new phage works by infecting bacteria in the phylum Halomonas, which are commonly found in sediments deep seas and the geyser-like openings on the seafloor that release streams of hot water called hydrothermal vents.

In their study, Wang and an international group of researchers describe the new virus identified as vB_HmeY_H4907. The virus was brought up in sediment from a depth of about 5.5 miles or more than 29,000 feet deep and is classified as a bacteriophage. Also called phage, they infect and replicate inside bacteria and are believed to be the most abundant life forms on Earth.

“To our best knowledge, this is the deepest known isolated phage in the global ocean,” said Wang.

According to Wang, the analysis of the viral genetic material points to the existence of a previously unknown viral family living in the deep ocean and some new insights into the evolution, genetic diversity, genomic features of deep-sea phages and how they interact with their hosts. 

Previously, this team has used metagenomic analysis to study the viruses that infect bacteria in the order Oceanospirallales. This order includes Halomonas, the phylum that this newly discovered virus infects. In this new study, the team searched for viruses in bacterial strains isolated by marine virologist Yu-Zhong Zhang, also from the Ocean University of China. 

[Reading: A deep sea mining zone in the remote Pacific is also a goldmine of unique species.]

The genomic analysis of the new virus suggests that it has a similar structure to its host and is widely distributed in the ocean. It is also lysogenic, meaning it invades and replicates inside its host, but typically does not kill the bacterial cell. The virus’s genetic material is then copied and passed on as the cells divide.

The discovery points to some new questions focused on the survival strategies that viruses living in harsh and generally secluded environments like the hadal zone trenches use and how they co-evolve with their hosts. Future studies also will aim to investigate the molecular machinery driving interactions between deep-sea viruses and their hosts. 

According to Wang, discovering more new viruses in extreme places, “would contribute to broadening our comprehension of the virosphere. Extreme environments offer optimal prospects for unearthing novel viruses.”

The post The deepest known ocean virus lives under 29,000 feet of water appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Pollen could hold clues to mysteries of early human migration https://www.popsci.com/science/pollen-human-migration/ Fri, 22 Sep 2023 18:00:00 +0000 https://www.popsci.com/?p=573514
Yellow pollen spring out from a coniferous tree. The pollen that makes us sneeze every spring, may have helped lay the groundwork for the migration of our very distant ancestors into Eurasia.
The pollen that makes us sneeze every spring, may have helped lay the groundwork for the migration of our very distant ancestors into Eurasia. Deposit Photos

More tree pollen could have led to more Pleistocene-era people living in Eurasia.

The post Pollen could hold clues to mysteries of early human migration appeared first on Popular Science.

]]>
Yellow pollen spring out from a coniferous tree. The pollen that makes us sneeze every spring, may have helped lay the groundwork for the migration of our very distant ancestors into Eurasia.
The pollen that makes us sneeze every spring, may have helped lay the groundwork for the migration of our very distant ancestors into Eurasia. Deposit Photos

There’s a recurring mystery surrounding early human migration: Exactly when did Homo sapiens make their way from Africa into Europe and Asia? It’s possible that a period of warmer temperatures could have contributed to this flow of people into Eurasia, according to a study published September 22 in the journal Science Advances. Warmer temperatures and more humidity may have helped the forests in the region grow and expand north into present-day Siberia. The theory hinges on the presence of pollen in the region’s sediment record. The scourge of modern day spring allergy sufferers could have laid the groundwork for our very distant ancestors’ migration into Eurasia.  

[Related: Humans and Neanderthals could have lived together even earlier than we thought.]

This movement could have begun in three waves into Eurasia about 54,000 years ago. It is also likely that both warm and cold climates would have played a role in this travel. The Pleistocene Epoch is known for huge climatic shifts, including the formation of the massive ice sheets and glaciers that would eventually forge and shape many of the landforms we see on Earth today. 

To piece together what the climate could have looked like during a possible warm period about 45,000 to 50,000 years ago, researchers working on the study created a record of the vegetation and pollen from the Pleistocene found around Lake Baikal in present-day Siberian region of Russia with the oldest archeological traces of Homo sapiens in the area. 

Sediment cores were used to extract data for a pollen timeline, and the study suggests that the dispersal of humans occurred during some of the highest temperatures and highest humidity of the late Pleistocene. The presence of more ancient pollen, and thus plant life, in the record shows evidence that coniferous forests and grasslands may have spread further throughout the region and could support foraging for food and hunting by humans. According to study author and University of Kansas anthropologist Ted Goebel, the environmental data combined with archeological evidence tell a new story of the area. 

“This contradicts some recent archaeological perspectives in Europe. The key factor here is accurate dating, not just of human fossils and animal bones associated with the archaeology of these people, but also of environmental records, including from pollen,” Goebel said in a statement. “What we have presented is a robust chronology of environmental changes in Lake Baikal during this time period, complemented by a well-dated archaeological record of Homo sapiens’ presence in the region.”

A map of theorized migration routes of early Homo sapiens from Africa across Eurasia. CREDIT: Ted Goebel.
A map of theorized migration routes of early Homo sapiens from Africa across Eurasia. CREDIT: Ted Goebel.

Goebel worked with teams from three institutions in Japan, including Masami Izuho of Tokyo Metropolitan University. During the pollen analysis, the team found some potential connections between the pollen data and the archeological record of early human migration into the region. The early modern humans of this period were making stone tools on slender blands and using bones, antlers, and even ivory to craft the tools. 

“There is one human fossil from Siberia, although not from Lake Baikal but farther west, at a place called Ust’-Ishim,” Goebel said. “Morphologically, it is human, but more importantly, it’s exceptionally well-preserved. It has been directly radiocarbon-dated and has yielded ancient DNA, confirming it as a representative of modern Homo sapiens, distinct from Neanderthals or Denisovans, or other pre-modern archaic humans.”

[Related: World’s oldest known wooden structure pre-dates our species.]

It’s possible that the earliest humans in the area likely would have lived in extended nuclear families, but it is difficult to say with certainty since so much archeological evidence has degraded over time. Ust’-Ishim in Siberia provides the earliest known evidence of fully modern humans coexisting with other extinct human species in the area, but the find was an “isolated discovery,” according to the team.

“We lack information about its archaeological context, whether it was part of a settlement or simply a solitary bone washed downstream,” said Goebel. “Consequently, linking that single individual to the archaeological sites in the Baikal region is tenuous—do they represent the same population? We think so, but definitely need more evidence.”

The post Pollen could hold clues to mysteries of early human migration appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These 24-eyed jellyfish learn from their mistakes https://www.popsci.com/environment/jellyfish-learn/ Fri, 22 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=573449
A Caribbean box jellyfish on a black background. It has a round, bell shaped body, with about 11 visible tentacles. It also has four parallel brain-like structures with roughly 1,000 nerve cells in each.
A Caribbean box jellyfish has four parallel brain-like structures with roughly 1,000 nerve cells in each. Jan Bielecki

Instead of a centralized brain, the Caribbean box jellyfish uses four brain-like structures to thrive the ocean.

The post These 24-eyed jellyfish learn from their mistakes appeared first on Popular Science.

]]>
A Caribbean box jellyfish on a black background. It has a round, bell shaped body, with about 11 visible tentacles. It also has four parallel brain-like structures with roughly 1,000 nerve cells in each.
A Caribbean box jellyfish has four parallel brain-like structures with roughly 1,000 nerve cells in each. Jan Bielecki

Jellyfish are an undeniable evolutionary success story, surviving at least 500 million years in Earth’s oceans. They are even poised to handle climate change very well in some areas of the world, all without a centralized brain like most animals. Despite this lack of a central brain, trained Caribbean box jellyfish can potentially remember their past experiences the way that flies, mice, and humans do, and learn to spot and dodge previously encountered obstacles in a tank. The findings are reported in a study published on September 22 in the journal Current Biology.

[Related: Jellyfish may have been roaming the seas for at least 500 million years.]

This species of jellyfish is ubiquitous in the waters of the Caribbean Sea and the central Indo-Pacific Ocean, but are generally just about a half inch in diameter. Box jellyfish like these are members of a class of jellyfish that are known for being among the most poisonous animals in the world and their stings can cause paralysis and even death in extreme cases

To keep up their stinging and navigate their watery world, jellyfish don’t have a centralized brain like most members of the animal kingdom. They have four parallel brain-like structures with roughly 1,000 nerve cells in each. By comparison, a human brain has approximately 100 billion nerve cells. Caribbean box jellyfish are equipped with a complex visual system of 24 eyes embedded into their bell-shaped body. They use this unique vision to steer through the murky waters of mangrove swamps, looking for prey and diving under underwater tree roots. 

“It was once presumed that jellyfish can only manage the simplest forms of learning, including habituation–i.e., the ability to get used to a certain stimulation, such as a constant sound or constant touch,” study co-author and University of Copenhagen neurobiologist Anders Garm said in a statement. “Now, we see that jellyfish have a much more refined ability to learn, and that they can actually learn from their mistakes. And in doing so, modify their behavior.”

In this study, the team used a round tank outfitted with gray and white stripes to mimic the jellyfish’s natural habitat. The gray stripes were mimicking mangrove roots that would appear to be distant at the start of the experiment. For 7.5 minutes, the team observed the jellyfish in the tank. Initially, the jelly swam close to these seemingly far away stripes and bumped into them frequently. However, by the end of the experiment, the jelly increased its average distance to the wall by roughly 50 percent, quadrupled the number of successful pivots to avoid collision with the fake tree, and cut its contact with the wall by half. 

The findings suggest that jellyfish can learn from experience and could acquire the ability to avoid obstacles through a process called associative learning. In this process, organisms form mental connections between sensory stimulations and behaviors

“Learning is the pinnacle [of] performance for nervous systems,” Jan Bielecki, a co-author of the study and a neuroscientist at Kiel University in Germany, said in a statement.

Bielecki added that in order to teach jellyfish a new trick, “it’s best to leverage its natural behaviors, something that makes sense to the animal, so it reaches its full potential.”

[Related: Italian chefs are cooking up a solution to booming jellyfish populations.]

The team then looked into pinpointing the underlying process of jellyfish’s associative learning by isolating the animal’s visual sensory centers called rhopalia. Each rhopalia houses six eyes that control the jellyfish’s pulsing motion. This motion spikes in frequency when the jelly swerves away from an obstacle. 

They showed the stationary rhopalium moving gray bars to mimic how the jelly approaches objects and the rhopalium did not respond to light gray bars, seemingly interpreting the bars as distant. The researchers then trained the rhopalium with some weak electric stimulations that mimicked the mechanical stimuli that occur when colliding with an object. Following the electric stimulation, the rhopalium started to generate obstacle-dodging signals in response to the light gray bars as they got closer. 

The findings from this stage of the experiment showed that combining visual and mechanical stimuli is necessary for associative learning in jellyfish and that the rhopalium is likely serving as the animal’s learning center.

“For fundamental neuroscience, this is pretty big news. It provides a new perspective on what can be done with a simple nervous system,” said Garm. “This suggests that advanced learning may have been one of the most important evolutionary benefits of the nervous system from the very beginning.”

The team plans to do a deeper dive into the cellular interactions of jellyfish nervous systems to tease apart the process of memory formation and also hope to understand how the mechanical sensor in the jellyfish’s body works to paint a more complete picture of its associative learning.

“It’s surprising how fast these animals learn; it’s about the same pace as advanced animals are doing,” says Garm. “Even the simplest nervous system seems to be able to do advanced learning, and this might turn out to be an extremely fundamental cellular mechanism invented at the dawn of the evolution nervous system.”

The post These 24-eyed jellyfish learn from their mistakes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Early humans carved old skeletal remains from burial caves into tools https://www.popsci.com/science/human-remains-tools/ Thu, 21 Sep 2023 17:00:00 +0000 https://www.popsci.com/?p=573331
A view of the Cueva de los Marmoles entrance from the inside. Skeletal remains from at least 12 prehistoric individuals have been found inside.
A view of the Cueva de los Marmoles entrance from the inside. Skeletal remains from at least 12 prehistoric individuals have been found inside. J.C. Vera Rodríguez

An ancient cup made out of a human skull was discovered in a cave in Spain.

The post Early humans carved old skeletal remains from burial caves into tools appeared first on Popular Science.

]]>
A view of the Cueva de los Marmoles entrance from the inside. Skeletal remains from at least 12 prehistoric individuals have been found inside.
A view of the Cueva de los Marmoles entrance from the inside. Skeletal remains from at least 12 prehistoric individuals have been found inside. J.C. Vera Rodríguez

The values and lifestyles of past societies are often revealed to anthropologists and archaeologists through their relationship with death and the burial of their dead. It’s an essential hallmark of human cultural systems and part of this relationship involves manipulations, retrieval, and reburial of human remains after an individual had died. Now, some new evidence from a cave in Spain shows that early humans may have returned to the burial site to craft tools from the bones and possibly extract marrow, potentially as food. The findings are detailed in a study published September 20 in the open-access journal PLOS One.

[Related: Cremated remains still hold clues to life and death in the Bronze Age.]

Caves along the Iberian Peninsula were not only Neanderthal crab cooking hotspots, but also as places to bury the dead and modify human remains for thousands of years. Using caves for burials was a common practice in multiple present-day countries, and it began to become more common in Portugal and Spain around the 4,000 BCE. The archaeological sites in this region show evidence that human remains were later manipulated for other uses, but the cultural meaning behind these changes is still largely unclear. 

University of Bern bioarchaeologist Zita Laffranchi, anthropologist Marco Milella, and  Universidad de Córdoba archaeologist Rafael M. Martínez Sánchez co-wrote the study, and  believe that the underground and dark features of the caves likely provided ancient humans with a well-suited place to house remains. 

A "skull-cup" made from the cranium of a human skull that separated from the lower part of the skull by breaking the bone removing the flesh was included in the findings. CREDITS: photographs by Z. Laffranchi, CT images by M. Milella.
A “skull-cup” made from the cranium of a human skull that separated from the lower part of the skull by breaking the bone removing the flesh was included in the findings. CREDITS: photographs by Z. Laffranchi, CT images by M. Milella.

“Such traits are shared by ancient Neolithic farming societies in Iberia, Europe, and other parts of the world, as part of a system of transcultural responses towards death. As if it were a ‘device of making ancestors,’ the community remains grouped together after death, in a subterranean space interpreted as a perpetual projection of an eternal nocturnal environment,” the study authors wrote in an interview accompanying the paper.

In the new study, the team examined human remains from the Cueva de los Marmoles cave in southern Spain. They looked at the bones of at least 12 people. Radiocarbon dating pegged the burials between the fifth and second millennium BCE, roughly from this area’s Neolithic period to its Bronze Age. Most of the items from this study were excavated between 1998 and 2018. These include a diligently carved human skull cup, a tibia that appears to have been modified for use as a tool, and dozens of other bone fragments found in the almost 27,000 square-foot cave. 

New evidence suggests that some remains may have been intentionally broken and scraped for marrow for up to a year after the Marmoles individuals had died. The team noted the intentional post-mortem modifications made to the remains, which include some fractures and scrapes to the bones. These cuts could have resulted from efforts to get marrow and other tissues from the bones for dietary or practical uses. 

A human bone recovered from the cave. CREDIT: J.C. Vera Rodríguez
A human bone recovered from the cave. CREDIT: J.C. Vera Rodríguez

They were initially surprised by the extended time frame that the cave was used for funerary practices.

“This suggests that Marmoles was a symbolic landmark for human communities living in the area, and was likely to be the presence of specific funerary traditions,” wrote the authors. “Secondly, the most interesting aspect of our findings was the complex treatment of the remains, often difficult to interpret, but which unequivocally points to rather homogenous actions, and well-defined traditions and beliefs systems.”

[Related: Extinct human cousins may have beaten us to inventing burial rituals.]

These results match other cave sites in the region, and show that burying human remains in caves and later modifying and using them as food and tools was daily widespread. While there could also be further symbolic purposes for these body modifications, those are still unclear and need further study. 

The authors say that the next steps will include continued archaeological study of the save and apply more radiocarbon, anthropological, and zooarchaeological analyses to the skeletal remains that may emerge in future digs at Marmoles and other burial caves in the area. 

The post Early humans carved old skeletal remains from burial caves into tools appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Humans might just love French bulldogs because they remind them of babies https://www.popsci.com/environment/french-bulldogs-why/ Thu, 21 Sep 2023 16:00:00 +0000 https://www.popsci.com/?p=573289
A black and white French bulldog puppy sits in a garden with green grass and orange flowers. In an experiment where dogs had to find food hidden in a box, flat-faced dogs were more likely to look back at people than a breed with a mid-length muzzle.
In an experiment where dogs had to find food hidden in a box, flat-faced dogs were more likely to look back at people than a breed with a mid-length muzzle. Deposit Photos

A small study offers clues on why these pooches are so popular, despite their known health issues.

The post Humans might just love French bulldogs because they remind them of babies appeared first on Popular Science.

]]>
A black and white French bulldog puppy sits in a garden with green grass and orange flowers. In an experiment where dogs had to find food hidden in a box, flat-faced dogs were more likely to look back at people than a breed with a mid-length muzzle.
In an experiment where dogs had to find food hidden in a box, flat-faced dogs were more likely to look back at people than a breed with a mid-length muzzle. Deposit Photos

Earlier this year, the French bulldog replaced the Labrador retriever as the most popular pet dog in the United States. Flat-faced or brachycephalic dogs continue to be a favorite despite their health problems. These include breathing issues like Brachycephalic Obstructive Airway Syndrome (BOAS), an increased risk of heat stroke, and multiple eye issues stemming from aesthetic-based genetic engineering and extreme breeding. In response to these health issues, the Netherlands has banned their breeding on ethical grounds, and the British Veterinary Association has urged people to not buy flat-faced breeds.

[Related: How breeding dogs for certain traits may have altered their brains.]

Cognitive ethologist and behavior biologist Eötvös Loránd University in Hungary Dorottya Júlia Ujfalussy and her team are working on understanding a “paradox phenomenon,” where the number of these flat faced pets continues to increase, despite their known health and longevity issues.

“One reason for choosing a flat-faced pet may be the child-like appearance, however, owner reports suggest that behavior is also involved. We are trying to pinpoint the behavior traits that set these breeds apart from breeds with more healthy head shapes,” Ujfalussy tells PopSci.

In a small study published September 21 in the journal Scientific Reports, Ujfalussy and her team found that these breeds are more likely to look at humans longer and display traits that appear “helpless” and more infant-like to humans. The team assessed the behavior of 15 English bulldogs and 15 French bulldogs compared to the behavior of 13 Hungarian mudis. Mudis are herding dogs with a mid-length muzzle and do not have the bulldogs’ squished face. 

The dogs had to try and open three boxes to retrieve a piece of food. The boxes had different opening techniques that varied in difficulty and they were presented to all of the dogs in a random order. The dogs also saw one of the researchers put a piece of sausage into a box and were then given two minutes to open the box. The team and dog’s owner stood behind the dog and out of direct sight during the experiment. 

A French bulldog successfully opening a box and retrieving the food. CREDIT: Erzsébet Mőbiusz/Marianna Molnár.
A French bulldog successfully opening a box and retrieving the food. CREDIT: Erzsébet Mőbiusz/Marianna Molnár.

English and French bulldogs successfully opened the box 93 percent less often than the mudis did. The successful mudis were also faster than the bulldogs who opened the boxes. By the time one minute had gone by, roughly 90 percent of mudis had opened the box, compared to about 50 percent of the bulldogs. However, the bulldogs were 4.16 and 4.49 times as likely to look back at their people than mudis.

“The most surprising was the extent of the helplessness, lack of success and visual orientation of dogs to the owners,” Ujfalussy says. “It seemed like they were depending on their humans to solve problems for them much more than your typical family dogs.”

The team believes that these findings show that short-faced dogs seek out humans when faced with problems more frequently, which may promote a stronger social relationship between the owners and their dogs due to this perception of helplessness. 

[Related: Dogs and wolves remember where you hide their food.]

The study could not establish whether flat-faced dogs are actually genetically predisposed to look more dependent on humans than other dog breeds or whether  owners’ attitudes towards flat-faced dogs encourages dependent behavior. The team is working to continue to study these behavior characteristics.

“We would like to raise awareness of this ‘flat-faced’ paradox in the hope that people make more conscious choices of pets, not relying on their instincts and falling for the ‘cute looks’ and dependent (helpless) behavior that reminds them of human children,” says Ujfalussy.

The post Humans might just love French bulldogs because they remind them of babies appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These parasitic plants force their victims to make them dinner https://www.popsci.com/science/parasitic-plants-force-hosts-to-grow/ Thu, 21 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=573243
Multiple reddish pink parasitic plants called balanophora growing in a forest. Balanophora shed one third of its genes as it evolved into a very streamlined parasitic plant.
Balanophora shed one third of its genes as it evolved into a very streamlined parasitic plant. Ze Wei/Plant Photo Bank of China/Nature Plants

Two parasitic plants in a new study are losing genes related to photosynthesis and other plant functions as they continue their food-sucking habits.

The post These parasitic plants force their victims to make them dinner appeared first on Popular Science.

]]>
Multiple reddish pink parasitic plants called balanophora growing in a forest. Balanophora shed one third of its genes as it evolved into a very streamlined parasitic plant.
Balanophora shed one third of its genes as it evolved into a very streamlined parasitic plant. Ze Wei/Plant Photo Bank of China/Nature Plants

Parasitic plants make up about 1 percent of flowering species within the plant kingdom and their quirks and tricks continue to come with surprises. Some parasitic plants are now potentially evolving to be so dependent on their host plants, that they are losing sizable amounts of genomes related to basic biological processes like photosynthesis. The findings are described in a study published September 21 in the journal Nature Plants.

[Related: How a peculiar parasitic plant relies on a rare Japanese rabbit.]

Plants in the Balanophoraceae family that are found in tropical and temperate regions in Asia and tropical Africa generally resemble fungi growing around the roots of trees in the forest, but there is a lot more than meets the eye. The structures that look like mushrooms are instead inflorescences, or a cluster of flowers intricately arranged on a stem.  

However, unlike other parasitic plants that extend a skinny projection called a haustorium into a host’s tissue to steal its nutrients, plants in the Balanophora genus actually induce their host plant’s vascular system to grow into a tuber to store nutrients. This forms a unique underground organ made from tissue of both the host plant that Balanophora then uses to eat..

To learn more about how these subtropical extreme parasitic plants evolved into this unique form, a team from the Beijing Genomics Institute (BGI) and the University of British Columbia compared Balanophora’s genomes with another parasitic plant genus called Sapria that has a very different vegetative body. Sapria are members of the family Rafflesiaceae, including some very smelly corpse flowers, and can generally be found in tropical forests of Asia.

The study found that Sapria has lost 38 percent of its genomes and Balanophora has lost 28 percent of their genomes over time, while evolving their parasitic behaviors, which the authors say is a record genetic shrinking for flowering plants.

A reddish pink parasitic plant grows from a root system. Balanophora is a parasitic plant found in tropical and temperate regions in Asia and tropical Africa and generally resembles fungi growing around the roots of trees in the forest.
Balanophora is a parasitic plant found in tropical and temperate regions in Asia and tropical Africa and generally resembles fungi growing around the roots of trees in the forest. CREDIT: Xiaoli Chen/BGI Research/Nature Plants.

“The extent of similar, but independent gene losses observed in Balanophora and Sapria is striking,” study co-author and BGI Research plant geneticist Xiaoli Chen said in a statement. “It points to a very strong convergence in the genetic evolution of holoparasitic lineages, despite their outwardly distinct life histories and appearances, and despite their having evolved from different groups of photosynthetic plants.”

They found that both Balanophora and Sapria have even lost almost all of the genes associated with photosynthesis and other key biological processes, including nitrogen absorption, root development, and the regulation of flower development. 

“The majority of the lost genes in Balanophora are probably related to functions essential in green plants, which have become functionally unnecessary in the parasites,” study co-author and University of British Columbia botanist Sean Graham said in a statement.

[Related: We’re finally figuring out how plants pass on genetic memories.]

Since these parasitic plants don’t necessarily need to rely on sunlight and water to make food through photosynthesis and instead use the resources of their host plants, they appear to be losing those genes. 

Notably, the genes related to the synthesis of a major hormone responsible for plant stress responses and signaling called abscisic acid (ABA) have also been lost in Balanophora and Sapria. Even with the loss, the team still recorded a build up of the ABA hormone in Balanophora’s flowering stems and saw that genes involved in the response to ABA signaling are still retained in the parasites. According to the team, this gene loss could be beneficial to the plant. 

“The loss of their entire ABA biosynthesis pathway may be a good example. It may help them to maintain physiological synchronization with the host plants,” said Graham. “This needs to be tested in the future.”

The team says that this study deepens the major genomic alterations occurring within parasitic plants and is important in the context of a project working to sequence the genomes of 10,000 plant species called 10KP.

The post These parasitic plants force their victims to make them dinner appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
As humans get louder, monkeys mark more territory https://www.popsci.com/environment/monkeys-more-smells/ Thu, 21 Sep 2023 12:30:00 +0000 https://www.popsci.com/?p=573006
A pied tamarin monkey sits on a large rope. Pied tamarin monkeys live in a small geographic range in Brazil, where they eat fruits, flowers, and various tree gums and saps.
Pied tamarin monkeys live in a small geographic range in Brazil, where they eat fruits, flowers, and various tree gums and saps. Jacob Dunn/Anglia Ruskin University

Brazil’s pied tamarin monkeys use scent marking and vocal calls to communicate, but it’s getting more difficult for them to hear one another.

The post As humans get louder, monkeys mark more territory appeared first on Popular Science.

]]>
A pied tamarin monkey sits on a large rope. Pied tamarin monkeys live in a small geographic range in Brazil, where they eat fruits, flowers, and various tree gums and saps.
Pied tamarin monkeys live in a small geographic range in Brazil, where they eat fruits, flowers, and various tree gums and saps. Jacob Dunn/Anglia Ruskin University

In an increasingly noisy world, some primates are pushing to be noticed with another sense. A study published September 20 in the journal Ethology Ecology & Evolution found that pied tamarin monkeys use scent markings to communicate more often so they can compensate for noise pollution generated by humans. 

[Related: Noise pollution messes with beluga whales’ travel plans.]

Pied tamarins are 11 to 12 inch long monkeys with furry bodies and bare faces. The species is currently listed as Critically Endangered by the IUCN. They live in a very narrow geographic range in central Brazil. Most of their territory now lies within the city of Manaus, a port city of about 2.6 million residents. The expansion of the city has restricted individual groups of monkeys to small patches that are surrounded by noisy urban spaces. 

Communicating with other groups of monkeys is crucial for their survival, so in addition to long vocal calls, pied tamarins use multiple types of scent markings to send messages. The scent markings have different functions, including passing along territorial and reproductive information. Pied tamarins have special glands above their genitals and near their stomachs that emit these scents that leave behind an olfactory message to other monkeys. This practice is also not unique to pied tamarins. Domestic and wild felines can use their famously pungent spray to mark territory, as do dogs and red pandas to name a few other mammals.

In the new study, a team from the Universidade Federal do Amazonas in Brazil and Anglia Ruskin University in England looked at the behavior of nine separate groups of wild pied tamarins. They followed each group for 10 days using radio tracking and the most common source of anthropogenic noise was road traffic. There was also noise pollution from park visitors, aircraft, and military activity.

The team found that the frequency of scent marking directly increased with decibel levels, which suggests that scent marking is being used more frequently as their vocal communication becomes more drowned out by human noise. 

“Many species depend on acoustic signals to communicate with other members of the same species about essential information such as foraging, mate attraction, predators, and territorial defense,” study co-author and Universidade Federal do Amazonas biologist Tainara Sobroza said in a statement

Their long vocal calls are generally used to mark territory and for communications between members of the group. In Manaus, they are important since the forest landscape is fragmented and urban areas are encroaching on their territory. The authors believe that this increase in scent marking is directly tied to this increase in urbanization. 

[Related from PopSci+: Why your dog needs to smell the world.]

“Humans have contributed many additional stimuli to the soundscapes that animals have evolved to deal with, and anthropogenic noise is increasingly drowning out natural sounds,” study co-author and Anglia Ruskin University behavioral ecologist Jacob Dunn said in a statement. “The increased use of scent marking by pied tamarins is likely to be a flexible response towards this environmental change. This is an interesting result from a conservation perspective as it shows pied tamarins are adapting their behavior in response to city noise.

One of the advantages scent marking has over vocal communication is that the information can be passed on over several days, instead of just after making a call. On the other hand, vocal calls are a better way of communicating over long distances. 

“As the pied tamarins’ range is becoming more fragmented and groups are becoming more isolated, this could potentially have a detrimental impact on a species which is already critically endangered,” said Dunn.

The post As humans get louder, monkeys mark more territory appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
World’s oldest known wooden structure pre-dates our species https://www.popsci.com/science/worlds-oldest-wooden-structure/ Wed, 20 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=572881
An archeologist wearing gloves holes a wedge shaped piece of wood dating back to the Early Stone Age.
A wedge shaped piece of wood dating back to the Early Stone Age. Larry Barham/University of Liverpool

The interlocking logs are about 476,000 years old and were located near a towering Zambian waterfall.

The post World’s oldest known wooden structure pre-dates our species appeared first on Popular Science.

]]>
An archeologist wearing gloves holes a wedge shaped piece of wood dating back to the Early Stone Age.
A wedge shaped piece of wood dating back to the Early Stone Age. Larry Barham/University of Liverpool

Archaeologists in Zambia have uncovered a wooden structure dating back about 476,000 years to the Early Stone Age or Pleistocene Epoch. It represents the earliest known use of wood in construction by human ancestors. The discovery at Kalambo Falls expands scientists’ understanding of the technical abilities early hominins must have had in order to shape tree trunks into large combined structures. The findings are detailed in a study published September 20 in the journal Nature. The structure itself predates the evolution of our own species (Homo sapiens) by potentially over 120,000 years

[Related: Mysterious skull points to a possible new branch on human family tree.]

Kalambo Falls is a 772-foot-tall waterfall that sits on the border of Zambia and Tanzania and is the second highest uninterrupted waterfall on the African continent. The wooden structure found there in 2019 includes two preserved interlocking logs joined side-to-side by an intentionally cut notch. The upper log appears to have been purposefully shaped and tool marks were found on both logs and a collection of wooden tools was also found.

The find is the earliest known evidence of humans deliberately shaping two logs to fit together. The authors believe that the logs may have been used to build a raised platform, walkway, or the foundation for dwellings constructed in the region’s periodically wet floodplain. Previous research has shown evidence that wood use at this time was limited to its use for digging, as spears, and in making fire. The other earliest example of a clearly modified wood object was collected in South Africa in 1952 and dates back to the Middle Stone Age

“This find has changed how I think about our early ancestors. Forget the label ‘Stone Age,’ look at what these people were doing: they made something new, and large, from wood,” study co-author and University of Liverpool archaeologist Larry Barham said in a statement. “They used their intelligence, imagination, and skills to create something they’d never seen before, something that had never previously existed.”

The wooden structure, showing where Stone Age Humans have cut into the wood. CREDIT: Larry Barham/University of Liverpool.
The wooden structure, showing where Stone Age humans have cut into the wood. CREDIT: Larry Barham/University of Liverpool.

Additionally, the authors say that this discovery challenges the view that Stone Age humans were nomadic. Kalambo Falls would have provided them with a constant source of water, and the forest around them would have supplied enough wood to help them make more permanent or semi-permanent structures. 

“They transformed their surroundings to make life easier, even if it was only by making a platform to sit on by the river to do their daily chores. These folks were more like us than we thought,” said Barham.

The team used new luminescence dating techniques to reveal an object’s age. It can estimate the last time that minerals in the sand surrounding the wood were exposed to sunlight. The analysis estimates that the artifact is close to half a million years old. 

“At this great age, putting a date on finds is very challenging and we used luminescence dating to do this,” study co-author and Aberystwyth University geographer and luminescence dating scientist Geoff Duller said in a statement. “These new dating methods have far reaching implications – allowing us to date much further back in time, to piece together sites that give us a glimpse into human evolution.”

[Related: Humans and Neanderthals could have lived together even earlier than we thought.]

The archaeological site Kalambo Falls was first excavated in the 1950s and 1960s, long before dating techniques could allow archaeologists to understand the significance of the findings. The area is currently on a tentative list to become a UNESCO World Heritage site due to its archaeological significance.   

Kalambo Falls in Zambia where the wood was found. CREDIT: Geoff Duller/Aberystwyth University.
Kalambo Falls in Zambia where the wood was found. CREDIT: Geoff Duller/Aberystwyth University.

This research is part of the Deep Roots of Humanity project, an interdisciplinary international team of researchers investigating how human technology developed in the Stone Age

“Kalambo Falls is an extraordinary site and a major heritage asset for Zambia. The Deep Roots team is looking forward to more exciting discoveries emerging from its waterlogged sands,” said Barham.

The post World’s oldest known wooden structure pre-dates our species appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The mystery behind pink diamonds just got some more clarity https://www.popsci.com/science/what-are-pink-diamonds/ Wed, 20 Sep 2023 14:15:00 +0000 https://www.popsci.com/?p=572908
Colored diamonds from the Argyle diamond mine in Australia.
Colored diamonds from the Argyle diamond mine in Australia. Murray Rayner/Rio Tinto

Scientists in Australia believe that continental collision and stretching is necessary for creating these colorful minerals.

The post The mystery behind pink diamonds just got some more clarity appeared first on Popular Science.

]]>
Colored diamonds from the Argyle diamond mine in Australia.
Colored diamonds from the Argyle diamond mine in Australia. Murray Rayner/Rio Tinto

The dramatic break up of an ancient supercontinent could be behind the planet’s cache of rare pink diamonds. A group of geologists and geoscientists in Australia have found that this shake-up 1.8 billion years ago was one of the key geological ingredients needed for the Earth to produce pink diamonds and why so many have been found in one particular spot in Western Australia. The findings are described in a study published September 19 in the journal Nature and could help the hunt for more deposits of these candy colored minerals.

[Related: ‘Barbie’ reminds us that pink is a power color for everyone.]

Diamonds are crystals of the element carbon that form deep within the Earth, where they are exposed to immense pressure and heat. They are generally brought to the Earth’s surface through magma during eruptions. Scientists believe this process takes millions and even billions of years. The Gemological Institute of America estimates that all of the Earth’s diamonds are billions of years old. 

For diamonds to turn pink, they must be subjected to the force generated by colliding tectonic plates, which bends and twists their crystal lattices the same way that it does to brown diamonds. This new study found that pink diamonds generally are found in locations where the Earth’s continents were ‘stretched’ when they began to break up hundreds of millions of years ago.

A team of researchers from Curtin University in Perth, Australia examined the diamond-rich rocks from the Argyle volcano in the western region of the continent. A closed mine near the Argyle volcano has been home to 90 percent of the world’s pink diamonds, according to mining company Rio Tinto. The stretching of landmasses when an ancient supercontinent called Nuna created gaps in the Earth’s that enable the magma carrying diamonds used to rise to the surface about 1.8 billion years ago.

“While the continent that would become Australia didn’t break up, the area where Argyle is situated was stretched, including along the scar, which created gaps in the Earth’s crust for magma to shoot up through to the surface, bringing with it pink diamonds,” study co-author and Curtin University geoscientist Hugo Olierook said in a statement

Argyle is located right where the rest of northern Australia and the country’s Kimberly region crashed together and that collision created a scar in the Earth that will never completely heal, according to Olierook.

The team used laser beams on rocks from the Argyle deposit and found that the rocks are 1.3 billion years old, or about 100 million years older than they previously believed. 

[Related: Diamonds contain remnants of Earth’s ancient atmosphere.]

“Knowing the Argyle volcano’s age, at 1.3 billion years old, and situated where some of Earth’s earliest continents fragmented, we have significant further insights into the formation of these diamonds,” Murray Rayner, a study co-author and principal geologist at Rio Tinto, said in a statement

The team believes that new deposits of pink diamonds could exist as long as the three crucial ingredients of deep carbon, continental collision, and then stretching are present. 

“Most diamond deposits have been found in the middle of ancient continents because their host volcanoes tend to be exposed at the surface for explorers to find,” said Olierook. “Argyle is at the suture of two of these ancient continents, and these edges are often covered by sand and soil, leaving the possibility that similar pink diamond-bearing volcanoes still sit undiscovered, including in Australia.”

The post The mystery behind pink diamonds just got some more clarity appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Treating high blood pressure can save 76 million lives in 30 years, WHO says https://www.popsci.com/health/high-blood-pressure-who-report/ Tue, 19 Sep 2023 21:00:00 +0000 https://www.popsci.com/?p=572640
A doctor uses a blood pressure cuff to take a patient's blood pressure.
Although low-cost medications can control high blood pressure, it’s still responsible for roughly 10 million deaths per year. Deposit Photos

Roughly 1 in 3 adults around the world have hypertension, which can be treated with lifestyle changes and medication.

The post Treating high blood pressure can save 76 million lives in 30 years, WHO says appeared first on Popular Science.

]]>
A doctor uses a blood pressure cuff to take a patient's blood pressure.
Although low-cost medications can control high blood pressure, it’s still responsible for roughly 10 million deaths per year. Deposit Photos

Adequately treating high blood pressure, or hypertension, would save 76 million lives between this year and 2050, according to a new report from the World Health Organization (WHO). About 1 in 3 adults around the world have this condition, which can lead to stroke, heart attack and failure, kidney damage, and other health problems. And the majority of those with hypertension—about 4 out of every 5 people—are not treated through timely diagnosis, lifestyle changes, medication, or a combination of all three, according to the first-of-its-kind report.

[Related: Why scientists are still on the quest to build an artificial heart.]

Although low-cost medications such as amlodipine or losartan can control high blood pressure, it’s still responsible for roughly 10 million deaths per year. “Hypertension control programs remain neglected, under-prioritized, and vastly underfunded,” WHO director-general Tedros Adhanom Ghebreyesus, said in a news release accompanying the report. This report, released during the 78th Session of the United Nations General Assembly, is WHO’s first on the global impact of high blood pressure. 

“Strengthening hypertension control must be part of every country’s journey towards universal health coverage, based on well-functioning, equitable and resilient health systems, built on a foundation of primary health care,” Ghebreyesus added.

More than half of those with hypertension, defined as a blood pressure of 140/90 mmHg, don’t know they have it. During a standard check-up in a doctor’s office, a blood pressure test measures the pressure in a patient’s arteries when their heart beats (which is the first number in a reading) and when the heart rests (the second number.) Increasing access to healthcare could help increase diagnosis and get effective treatments to those in need. Medication can help lower high blood pressure; those taking drugs prescribed for hypertension doubled between 1990 and 2019.

“Treating hypertension through primary health care will save lives, while also saving billions of dollars a year,” said Michael R. Bloomberg, a WHO ambassador and former New York City mayor, in a statement. In addition to proper screening, preventative measures include eating a balanced diet, avoiding alcohol and tobacco, regular exercise, and weight management.

Governments also have a critical role in keeping their citizens healthy and blood pressures normal. According to WHO’s report, South Korea and Canada have delivered comprehensive national hypertension treatment programs with positive results. Both nations have surpassed the 50 percent mark for controlling blood pressure in adults with hypertension. Additionally, more than 40 low- and middle-income countries have used WHO’s HEART’S package to strengthen their nations’ hypertension and cardiovascular care. Through the program, which does what in a phrase, more than 17 million people in countries including Bangladesh, Cuba, India, and Sri Lanka, have been enrolled in hypertension treatment programs. 

[Related: Reducing sodium in packaged foods could reduce disease and save lives.]

One focus of programs to avoid high blood pressure is to reduce daily sodium intake. “Most heart attacks and strokes in the world today can be prevented with affordable, safe, accessible medicines and other interventions, such as sodium reduction,” Bloomberg added.

The daily recommended amount of sodium varies between countries, but WHO recommends less than 2,000 milligrams a day. However, the organization estimates that the global average is more than twice that amount. In the United States, the Centers for Disease Control and Prevention (CDC) recommends an intake of less than 2,300 mg of sodium a day. Americans consume over 3,400 mg of sodium daily on average, and hypertension affects roughly about 32 percent of Americans ages 30 to 79.

“It’s great to see the WHO taking this issue head-on. Heart disease and stroke are the leading causes of death worldwide and hypertension is a major driver of those deaths,” says primary care physician Nate Favini, the chief medical officer of Forward, a preventative healthcare startup uses a doctor-led 12 week program and at-home biometric monitoring to help patients manage their blood pressure.

The post Treating high blood pressure can save 76 million lives in 30 years, WHO says appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This parasite deploys mucus slime balls to make ‘zombie ants’ https://www.popsci.com/science/parasite-zombie-ants/ Tue, 19 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=572374
A dissected ant and where you can see the encapsulated parasites (white oval structures) spilling out of the hind body.
A dissected ant and where you can see the encapsulated parasites (white oval structures) spilling out of the hind body. Brian Lund Fredensborg

A new study finds that lancet liver flukes may be using air temperature to their infection advantage.

The post This parasite deploys mucus slime balls to make ‘zombie ants’ appeared first on Popular Science.

]]>
A dissected ant and where you can see the encapsulated parasites (white oval structures) spilling out of the hind body.
A dissected ant and where you can see the encapsulated parasites (white oval structures) spilling out of the hind body. Brian Lund Fredensborg

Just in time for spooky season, scientists have learned more about how a tiny parasitic flatworm called the lancet liver fluke infects and controls the brains of ants. With their complex four-step cycle, the flukes could be cunningly adjusting to daily changes in air temperatures to infect more hosts. The findings were recently published in the journal Behavioral Ecology.

[Related: Mind-controlling ‘zombie’ parasites are real.]

Step 1: The Zombie Ant

The parasite hijacks an ant’s brain after an ant eats a ball of snail mucus infested with fluke larvae. The larvae then mature inside the brain, where the parasite can make the ant climb up a blade of grass and clamp down on the blade. This strategic height makes it easier for the parasite’s next potential host—a cow, sheep, deer, or other grazer—to eat the flukes and offer it another place to live and breed. This new study found that the liver fluke can even get the ant to crawl back down the blade of grass when it gets too hot.

“Getting the ants high up in the grass for when cattle or deer graze during the cool morning and evening hours, and then down again to avoid the sun’s deadly rays, is quite smart. Our discovery reveals a parasite that is more sophisticated than we originally believed it to be,” University of Copenhagen biologist and study co-author Brian Lund Fredensborg said in a statement. Fredensborg conducted the research with his former graduate student Simone Nordstrand Gasque, now a PhD student at Wageningen University in the Netherlands.

In their study, the team tagged several hundred infected ants in the Bidstrup Forests near Roskilde, Denmark. “It took some dexterity to glue colors and numbers onto the rear segments of the ants, but it allowed us to keep track of them for longer periods of time,” said Fredensborg.

The team observed how the infected ants behaved to humidity, light, time of day, and temperature and it was clear that temperature has an effect on their behavior. During cooler temperatures, the ants were more likely to be attached to the top of a blade of grass. When the temperature rose, the ants let go of the grass and crawled back down. 

“We found a clear correlation between temperature and ant behavior,” said Fredensborg. “We joked about having found the ants’ zombie switch,’”

Step 2: The Grazer

Once the liver fluke infects the ant, several hundred parasites invade the insect’s body. Only one of these parasites will make it to the brain where it then influences the ant’s behavior. The remaining liver flukes conceal themselves in the ant’s abdomen inside of its intestine. There, the liver flukes find their way through the bile ducts and into the liver, where they suck blood and develop into adult flukes that begin to lay eggs. 

[Related: ‘Brainwashing’ parasites inherit a strange genetic gap.]

“Here, there can be hundreds of liver flukes waiting for the ant to get them into their next host. They are wrapped in a capsule which protects them from the consequent host’s stomach acid, while the liver fluke that took control of the ant, dies. You could say that it sacrifices itself for the others,” said Fredensborg. 

The eggs are then excreted in the host animal’s feces.

Step 3: The Snail

Once the fluke eggs have been excreted, they remain on the ground waiting for a snail to crawl by and eat the feces. When the eggs are inside the snail, the eggs develop into larval flukes that reproduce asexually and can multiply into several thousand. 

“Historically, parasites have never really been focused on that much, despite there being scientific sources which say that parasitism is the most widespread life form,” said Fredensborg. “This is in part due to the fact that parasites are quite difficult to study.”

Step 4: The Slime Ball

To exit the snail and move on to their next host, the larval flukes make the snail cough. The flukes are then expelled from the snail in a lump of mucus. The ants are attracted to this moist ball, eat it, and unwittingly ingest more fluke larvae and the cycle begins all over again.

The tiny liver fluke is widespread in Denmark and other temperate regions around the world and researchers are still trying to understand more of the mechanisms behind how they take over a host’s brain. 

“We now know that temperature determines when the parasite will take over an ant’s brain. But we still need to figure out which cocktail of chemical substances the parasite uses to turn ants into zombies,” Fredensborg said. “Nevertheless, the hidden world of parasites forms a significant part of biodiversity, and by changing the host’s behavior, they can help determine who eats what in nature. That’s why they’re important for us to understand.”

The post This parasite deploys mucus slime balls to make ‘zombie ants’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
World’s oldest living aquarium fish could be 100 years young https://www.popsci.com/science/worlds-oldest-living-aquarium-fish/ Tue, 19 Sep 2023 14:00:00 +0000 https://www.popsci.com/?p=572229
An Australian lungfish named Methuselah swims in a tank at the Steinhart Aquarium. The fish has a flat snout, olive-green scales, and a long torpedo-shaped body.
Australian lungfish like Methuselah are native to only to two river systems in Australia and they can use a single lung to breathe air. Gayle Laird/California Academy of Sciences

New DNA analysis reveals that Methuselah the Australian lungfish is even further along in years than scientists previously believed.

The post World’s oldest living aquarium fish could be 100 years young appeared first on Popular Science.

]]>
An Australian lungfish named Methuselah swims in a tank at the Steinhart Aquarium. The fish has a flat snout, olive-green scales, and a long torpedo-shaped body.
Australian lungfish like Methuselah are native to only to two river systems in Australia and they can use a single lung to breathe air. Gayle Laird/California Academy of Sciences

The world’s oldest living aquarium fish is actually even older than scientists initially believed. According to an analysis by the California Academy of Sciences, the Steinhart Aquarium’s beloved Australian lungfish named Methuselah is estimated to be about 92 years old, with a high-estimate of over 100.

[Related: Hogfish ‘see’ using their skin.]

Meet Methuselah

Native only to two river systems in Australia, this type of lungfish can actually breathe air. They use a single lung when the streams they live in are more dry than usual or when the water quality changes, according to the Australian Museum. They typically have olive green, black, or brown scales and a body shaped like a torpedo with a flattened snout. While the species is over 100 million years old, they are listed as Endangered on the IUCN Red List. They are very sensitive to human-caused changes to its habitat, primarily damming, that can increase sediment levels in the water. 

CREDIT: California Academy of Sciences.

Methuselah first arrived at the San Francisco aquarium in 1938, aboard a Matson Navigation Company liner. She has outlived the 231 other fish from Australia and Fiji that arrived with her, back when Franklin D. Roosevelt was in his second term as President of the United States and Back to the Future’s Christopher Llloyd was only a baby. 

In the many decades since, Methuselah has become famous in the area for not only her advanced age, but a seemingly charming personality and a puppy-like love of belly rubs. The knowledge of her age is helpful in the context of a larger study on how to more accurately determine the age of lungfish in the wild and help conservation efforts. She was previously estimated to be about 84 years old.

“Although we know Methuselah came to us in the late 1930s, there was no method for determining her age at that time, so it’s incredibly exciting to get science-based information on her actual age,” Steinhart Aquarium’s Curator of Aquarium Projects Charles Delbeek, said in a statement. “Methuselah is an important ambassador for her species, helping to educate and stoke curiosity in visitors from all over the world. But her impact goes beyond delighting guests at the aquarium: Making our living collection available to researchers across the world helps further our understanding of biodiversity and what species need to survive and thrive.”

[Related: Trumpetfish use other fish as camouflage.]

How scientists determined the age of the oldest living aquarium fish

Estimating ages for ancient and long-lived fish like lungfish is technically challenging and has traditionally relied on more invasive and sometimes lethal methods to determine the age of fishes, including removing scales and examining inner ear bones called otoliths. The new age detection method used to estimate Methuselah’s age only uses a small tissue sample from a fin clip and the team believed that this method can be applied to other threatened species, without impacting threatened populations or the animal’s health.

The DNA analysis for this new estimate was led by Ben Mayne of Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) and David T. Roberts of Australian water authority Seqwater. Their upcoming study included Methuselah, two other lungfish belonging to the California Academy of Sciences (ages 54 and 50), and 30 other lungfish from six institutions in Australia and the United States. It created a catalog of living lungfish with the goal of advancing more accurate DNA-based age clocks for the species native to Australia.  This new analysis also found that she could be as old as 101.

“For the first time since the Australian lungfish’s discovery in 1870, the DNA age clock we developed offers the ability to predict the maximum age of the species,” said Mayne. “Accurately knowing the ages of fish in a population, including the maximum age, is vital for their management. This tells us just how long a species can survive and reproduce in the wild, which is critical for modeling population viability and reproductive potential for a species.”

Their original paper detailing how this age prediction method works was published in June 2021 in the journal Molecular Ecology Resources and offers a description of how threatened fish can be safely aged with DNA methylation methods.

“Methuselah’s age was challenging to calculate as her age is beyond the currently calibrated clock. This means her actual age could conceivably be over 100, placing her in the rare club of fish centenarians. While her age prediction will improve over time, she will always live beyond the calibrated age clock, as no other lungfish we know is older than Methuselah,” said Roberts.

The post World’s oldest living aquarium fish could be 100 years young appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
‘Jet lag’ could be messing with pandas’ natural mating behaviors https://www.popsci.com/environment/giant-pandas-jet-lag/ Mon, 18 Sep 2023 17:00:00 +0000 https://www.popsci.com/?p=571738
A giant panda eats a green plant.
Giant pandas in the wild and captivity show three activity peaks in 24 hours, including one peak during nighttime hours. Deposit Photos

Giant pandas living in zoos outside of their original latitudinal range might be missing out on environmental cues.

The post ‘Jet lag’ could be messing with pandas’ natural mating behaviors appeared first on Popular Science.

]]>
A giant panda eats a green plant.
Giant pandas in the wild and captivity show three activity peaks in 24 hours, including one peak during nighttime hours. Deposit Photos

Jet lag isn’t just an unpleasant side effect of travel for humans. It could also affect the internal circadian clock of captive giant pandas living outside of their natural habitat range in China. A study published September 18 in the journal Frontiers in Psychology found that outdoor cues like changes in temperature and daylight are particularly important for giant pandas. Some problems can arise when their environments and natural body clock don’t match up. 

[Related: Pandas weren’t always bamboo fiends.]

Animals’ internal circadian clocks are generally regulated by cues from the environment and are linked to changes in their behavior and physiology. For humpback whales in the North Atlantic, the decrease in the daylight around the autumnal equinox likely signals that it’s time for the whales to migrate south to their breeding grounds in the Caribbean. Several species of migratory birds use variation in temperature to time their migrations and delaying their departures may help them navigate climate change, but at a cost. 

“Animals, including humans, have evolved rhythms to synchronize their internal environment with the external environment,” University of Stirling PhD student and study co-author Kristine Gandia said in a statement. “When internal clocks are not synchronized with external cues like light and temperature, animals experience adverse effects. In humans, this can range from jet lag to metabolic issues and seasonal affective disorder.” 

For the pandas in this study, those living outside of their latitudinal ranges were observed performing fewer activities than they would in the wild and responding to some human-based cues that only exist in captivity. 

Giant pandas in the wild live highly seasonal lives, where spring is time for migrations to find new shoots of their preferred bamboo. Migration season is also mating season, possibly because finding mates is easier when pandas are all after the same bamboo shoots. Pandas are also a favorite in zoos around the world and their public webcams make them easier to observe. 

In this new study, scientists set out to understand how pandas in zoos are affected by the “jet lag” of living in latitudes they did not evolve in, since important conditions such as daylight and temperature ranges will be different in these areas. According to Gandia, the latitudinal range for giant pandas is between 26 and 42 degrees north and matching latitudes could be between 26 and 42 degrees south, since these latitudes mirror the temperature and lighting conditions further north. Other latitudes will have different amounts of sunlight and varying temperatures, which could alter the panda’s internal clocks and changes to their behaviors, such as, looking for a mate. The study also looked at whether or not anthropogenic cues like regular visits from keepers could also affect their circadian clock. 

The team of 13 observers used webcams to monitor 11 giant pandas born in captivity at six zoos both inside and outside pandas’ natural latitudinal range. Every month for one year, they carried out one day’s worth of hourly focal sampling–watching one animal for a set length of time and recording everything the animal does–to see how their behavior changed across a day and how that changed across a year. The observers noted general activity, sexual behavior, and abnormal behavior.

Daylight and temperature changes were particularly important cues for pandas and were closely associated with general activity in latitudes that matched their natural range in China. Just like their wild counterparts, pandas in captivity showed three peaks of activity over 24 hours, including a peak at night. Sexual behaviors were only displayed by adult pandas during the day, which possibly makes it easier to find mates in the wild.

[Related: The science behind our circadian rhythms, and why time changes mess them up.]

The pandas living outside their home latitude were less active, correlating to the different temperature and daylight cues in these newer latitudes. 

“When giant pandas are housed at higher latitudes—meaning they experience more extreme seasons than they evolved with—this changes their levels of general activity and abnormal behavior,” said Gandia. One of the abnormal behaviors included reacting to zoo-specific cues, such as becoming very active during the early morning. This indicates that the pandas may be anticipating a keeper visiting with fresh food.  

Additionally, the pandas’ abnormal and sexual behaviors fluctuated at similar points. The team believes that this could represent frustration that the pandas can’t mate or migrate in captivity as they would in the wild. The pandas living in mismatched latitudes performed fewer abnormal behaviors related to mating, potentially because they weren’t getting the same environmental cues for sexual behaviors.

“To expand on this research, we would want to incorporate cycles of physiological indicators,” said Gandia. “Importantly, we would want to assess sexual hormones to understand the effects the environment may have on the timing of release. This could help us further understand how to promote successful reproduction for a vulnerable species which is notoriously difficult to breed.”

The post ‘Jet lag’ could be messing with pandas’ natural mating behaviors appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Pearl Harbor dataset holds clues to how WWII may have shaped weather data https://www.popsci.com/environment/pearl-harbor-wwii-logbooks-weather-dat/ Mon, 18 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=571511
A black and white archival photo of the USS Arizona sinking during the attack on Pearl Harbor on December 7, 1941.
The USS Arizona sinks during the attack on Pear Harbor on December 7, 1941. NPS

A new dataset contains more than 3 million individual weather observations, as well as logs from vessels bombed at Pearl Harbor.

The post Pearl Harbor dataset holds clues to how WWII may have shaped weather data appeared first on Popular Science.

]]>
A black and white archival photo of the USS Arizona sinking during the attack on Pearl Harbor on December 7, 1941.
The USS Arizona sinks during the attack on Pear Harbor on December 7, 1941. NPS

A team of scientists and volunteers from the University of Reading in England recovered and digitized weather data from several ships that were bombed during the attack on Pearl Harbor in World War II. This nearly century-old data is offering clues how the war changed daily weather observations at the time.

When the US naval base was attacked on December 7, 1941 by Japanese military forces, over 100 vessels were stationed there. During the initial attack, the USS Arizona and USS Oklahoma sank and the USS Nevada beached after being hit by a torpedo and at least six bombs. Most of the remaining vessels from the fleet eventually returned to service and the crew members resumed recording weather data among their other daily duties.

[Related: The Rise Of The Tank Before World War II.]

The paper published September 18 in the Geoscience Data Journal describes how weather data from WWII was recovered from 19 United States Navy ships. Some earlier research has suggested these years were abnormally warm, and this new dataset of over 630,000 records with more than 3 million individual observations, is helping piece together the mystery referred to as the WWII warm anomaly.

These newly recovered datasets show how wartime created changes in observation practices, including taking more of them during the day rather than at night to avoid being detected by enemy ships. Due to this shift in when the measurements were taken, the team believes that collecting weather data only during daylight hours may have led to the slightly warmer temperatures recorded during the war. Future studies with this newly digitized data will help resolve if the weather truly was warmer during 1941 to 1945 and fill in gaps that will help scientists better understand how the global climate has evolved since the 1940s.

“Disruptions to trade routes in World War II led to a significant reduction in marine weather observations,” University of Reading meteorological research scientist and study co-author Praveen Teleti said in a statement. “Until recently, records from that time were still only available in classified paper documents. The scanning and rescuing of this data provides a window into the past, allowing us to understand how the world’s climate was behaving during a time of tremendous upheaval.“

In the study, the team used recovered logbooks from 19 different vessels, including battleships, aircraft carriers, destroyers, and cruisers. Many of these ships were present during the attack in December 1941 that killed 2,404 US military servicemembers and civilians, along with 64 Japanese servicemembers. All of the ships in this study saw some combat in the Pacific at some point during the war. The USS Pennsylvania remained in service after being hit during the attack, when one bomb fell on the battleship killing nine servicemembers. The USS Tennessee was bombed twice in December 1941, killing five servicemembers. The 32,300-ton battleship returned to service in February 1942. 

[Related: Severe droughts are bringing archaeological wonders and historic horrors to the surface.]

Additionally, over 4,000 volunteers transcribed more than 29,000 logbook images from the fleet stationed in Hawaii from 1941 through 1945 to generate the dataset.

“There are two sets of people we need to thank for making this mission a success. We are very grateful to the global team of citizen scientists for transcribing these observations and creating a huge dataset that includes millions of entries about air and sea surface temperatures, atmospheric pressure, wind speed, and wind direction,” said Teleti. “The greatest respect must go to the brave servicemen who recorded this data. War was all around them, but they still did their jobs with such professionalism. It is thanks to their dedication and determination that we have these observations 80 years on.”

The post Pearl Harbor dataset holds clues to how WWII may have shaped weather data appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Stone Age animal engravings in Namibian caves guided Indigenous trackers over time https://www.popsci.com/science/namibian-cave-art-animals-stone-age/ Thu, 14 Sep 2023 12:00:00 +0000 https://www.popsci.com/?p=570042
Stone Age animal and human depictions in Doro! nawas mountains, Namibia.
Stone Age animal and human depictions in Doro! nawas mountains, Namibia. Andreas Pastoors

Experts could determine species, general age, and biological sex of the immaculately drawn creatures.

The post Stone Age animal engravings in Namibian caves guided Indigenous trackers over time appeared first on Popular Science.

]]>
Stone Age animal and human depictions in Doro! nawas mountains, Namibia.
Stone Age animal and human depictions in Doro! nawas mountains, Namibia. Andreas Pastoors

Cave paintings and rock art date back at least more than 57,000 years. They detail everything from an early form of writing to more recent dark stories of conflict. They also appear to have been an important animal tracking tool. In present-day Namibia, prehistoric peoples from the Late Stone Age put so much detail into their engravings of human and animal prints, that modern day Indigenous trackers were able to identify exactly which animal prints they were depicting, but also the animals general age and sex. The findings are detailed in a study published September 13 in the open-access journal PLoS ONE.

[Related: Cave drawings from 20,000 years ago may feature an early form of writing.]

While engravings of human footprints and animal tracks appear in various traditions of prehistoric rock art around the world, Namibia is especially rich in well-executed rock art made by hunter-gatherers in the Late Stone Age. 

Archaeology photo
Detail of Stone Age depictions of human footprints and animal tracks in Doro! nawas mountains, Namibia. Credit: Andreas Pastoors.

In the new study, a team of researchers from Germany and Namibia worked with Indigenous tracking experts from the Kalahari desert to analyze animal and human footprints found in rock art in the Doro! Nawas Mountains in central Western Namibia. The tracking experts were able to define the species, sex, age group, and even the exact leg of the animal or human print in more than 90 percent of the 513 engravings they examined. The rock art had significantly more diversity in the animals represented by the tracks than the ones of animals themselves. The prehistoric engravers also showed a clear preference for certain species of animals, were more likely to depict adult animals than juveniles, and male footprints outnumbered female footprints.

According to the team, the new findings reveal some patterns that likely arise from culturally determined preferences, but the meaning of these cultural preference patterns is still unknown. The team believes that consulting with present-day Indigenous experts may help determine more of the meaning behind the drawings. However, they point out that while Indigenous knowledge is critical for advancing archaeological research, the precise meaning and context of this rock art will likely remain elusive.

[Related: A discovery found in Germany’s ‘Unicorn Cave’ hints at Neanderthal art.]

“Namibia’s rock faces contain numerous Stone Age depictions of animals and humans, as well as human footprints and animal tracks. Until now, the latter have received little attention because researchers lacked the knowledge to interpret them,” the authors added.

The post Stone Age animal engravings in Namibian caves guided Indigenous trackers over time appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Dogs and wolves remember where you hide their food https://www.popsci.com/science/spatial-memory-wolf-dog/ Wed, 13 Sep 2023 18:00:00 +0000 https://www.popsci.com/?p=569974
Hidden snacks are no match for the keen eyes and memory of wolves and dogs.
Hidden snacks are no match for the keen eyes and memory of wolves and dogs. DepositPhotos

A new study shows that visual memory, not just scent cues, are used to hunt down treats.

The post Dogs and wolves remember where you hide their food appeared first on Popular Science.

]]>
Hidden snacks are no match for the keen eyes and memory of wolves and dogs.
Hidden snacks are no match for the keen eyes and memory of wolves and dogs. DepositPhotos

Dogs and wolves are well known for their incredible sense of smell, but some new research suggests that they do not solely rely on their olfactory gifts to find food. In a study of multiple wolves and dogs published September 13 in the open-access journal PLoS ONE, a team of researchers found that both animals performed better at finding hidden food if they visually observed it being hidden by a human. This suggests that they could be remembering where the food was, and not just following their noses alone. 

[Related from PopSci+: Why your dog needs to smell the world.]

Social learning is an important way for many species—such as chimpanzees, octopuses, and rats—to transmit information. In social learning, one individual learns by observing or interacting with another. Some earlier research has suggested that both wolves and dogs are capable of a form of social learning called observational spatial memory. This is where an individual animal can remember where another individual has hidden food and then snatch it. However, there are still several knowledge gaps to fill in about these abilities and how they may differ between wolves and domesticated dogs. 

In the study, a team from the University of Veterinary Medicine in Vienna, Austria used nine timber wolves and eight mongrel or mutt dogs living at the Wolf Science Center in Ernstbrunn, Austria. They tested the ability of each animal to find four, six, or eight caches of food, after either seeing a human hiding them or without seeing the food be hidden.

They found that both dogs and wolves found more of the first five food caches more quickly and with less distance traveled if they had seen the food compared to scenarios where they didn’t observe a human hiding the cache. The authors believe that this suggests that the wolves and dogs didn’t just use their noses to find the treats and provides more support to the theory that wolves and dogs are capable of observational spatial memory.

[Related: Old dogs need to learn new tricks. Here’s why.]

Additionally, wolves outperformed dogs at finding the cache, whether or not they saw the food being hidden. The team believes that this difference in performance may not be due to differing observational spatial memory abilities between wolves and dogs, but from differences in other traits like persistence and food-related motivation.

“While domestication probably affected dogs’ willingness to adjust to humans, the results of the current study collaborate previous findings suggesting that cognitive abilities do not differ very much between dogs and wolves,” the authors wrote.

The post Dogs and wolves remember where you hide their food appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
New series offers an intimate look into how climate change impacts the lives of wildlife https://www.popsci.com/environment/animals-up-close-bertie-gregory/ Mon, 11 Sep 2023 12:00:00 +0000 https://www.popsci.com/?p=568557
An orca whale swims around an ice flow with a crabeater seal and penguin on the ice.
An orca whale swims around an ice flow with a crabeater seal and penguin on the ice. National Geographic for Disney+/Leigh Hickmott

Catch an exclusive clip of orca whales before Animals Up Close with Bertie Gregory premieres on September 13.

The post New series offers an intimate look into how climate change impacts the lives of wildlife appeared first on Popular Science.

]]>
An orca whale swims around an ice flow with a crabeater seal and penguin on the ice.
An orca whale swims around an ice flow with a crabeater seal and penguin on the ice. National Geographic for Disney+/Leigh Hickmott

Climate change is often in the form of extremes in weather like sweltering heat domes, devastating inland flooding or record breaking wildfire seasons, which puts lives and livelihoods at risk for humans. However, the world’s animals who are on the front lines of an ever changing planet experience these changes a little differently. 

[Related: We don’t have a full picture of the planet’s shrinking biodiversity. Here’s why.]

“When we see climate change in the news, we often think of big storms or major weather events but animals are vulnerable to the smallest changes,” wildlife filmmaker and host Bertie Gregory tells PopSci

In the new series “Animals Up Close with Bertie Gregory,” viewers can get a look into these subtleties and changes. In one episode, the team is searching a dive spot in Indonesia for the elusive devil ray, when a swarm of hundreds of jellyfish approaches.

“Avoiding their stingers was like playing a video game! We were told that huge jellyfish plumes like that were becoming a more regular sight in these tropical waters, which is not a good sign,” Gregory says. 

When Gregory checked the dive thermometer, it read 87.8 degrees Fahrenheit, in water that should have been about 82 degrees. A few degrees might not always sound like much, but has an outsized impact on animals.  “Jellyfish are thought to tolerate climate change better than other species, hence their huge numbers on that day. For us, it meant no other signs of life,” says Gregory.

[Related: Maine’s puffins show another year of remarkable resiliency.]

The series spans the planet and uses high-tech drones and cameras that Gregory calls a “game changer” for wildlife filmmaking. The tech allows the filmmakers to catch a glimpse of the outer lives of animals and even some of their more inner workings.

“We also used a military grade thermal imaging camera to film elephants at night in the depth of the jungle in the Central African Republic—it uses heat to “see” in the dark and elephant ears look incredible as you can see all their veins!” says Gregory.

The series also captures just how difficult it is for terrestrial animals like the pumas of Patagonia and marine mammals like Antarctica’s orca whales to get a solid meal and how climate change continues to threaten vital food sources. 

An episode features a group of Antarctic orcas known as the B1s during what Gregory says was the warmest Antarctic trip he has ever experienced. These killer whales are known for a unique strategy to hunt seals resting on the ice that might remind some orca enthusiasts of the hydroplaning killer whales near Argentina’s Valdés peninsula who thrust their 8,000 to 16,000 pound bodies up onto the beach to catch seals. 

Bertie records the sounds made by killer whales as they echolocate. He explains how scientists believe that this is a way that their navigation is perfectly coordinated. CREDIT: National Geographic for Disney+.

Instead of using surf, sand, and rocks like their Argentinian cousins, these Antarctic killer whales work together as a team to create waves that wash the seals into the water. 

“We witnessed and filmed the staggering intelligence and adaptability of a group of killer whales. There are thought to be just 100 of these unique killer whales in existence, and during filming it was clear they were struggling to ‘wave wash’ seals from ice because there wasn’t much ice,” says Gregory.

[Related: Orcas are attacking boats. But is it revenge or trauma?]

The whales had to constantly adapt their strategy just to get a single seal, sometimes risking an escape from their prey in order to teach the younger whales strategies to carry on to the next generation. 

These constant struggles offer up sobering reminders of the macro and micro ways that the planet is changing and making life more difficult for almost every living thing.. Over one million animal and plant species are threatened with extinction, a rate of loss that is 1,000 times greater than previously expected. The  United Nations agreed upon a biodiversity treaty at the end of 2022 pledging to protect 30 percent of the Earth’s wild land and oceans by 2030. Currently, only about 17 percent of terrestrial and 10 percent of marine areas are protected through legislation.

Bumphead parrot fish. CREDIT: National Geographic for Disney+/Bertie Gregory
A bumphead parrot fish. CREDIT: National Geographic for Disney+/Bertie Gregory

The same location in Indonesia where Gregory and his team encountered the stingy jellyfish swarm is home to the Misool Marine Reserve. Despite climate change’s constant challenges, the area is a conservation success story thanks to community-led initiatives to protect the area from overfishing by implementing specific parts where fishing is allowed.

“Now, Misool is one of the few places on earth where biodiversity is increasing. What they’ve managed to do could be a blueprint for how we can protect oceans around the world and proof that if given the chance, nature can make an amazing comeback,” says Gregory. “It’s good news for wildlife and good news for people.”

“Animals Up Close with Bertie Gregory” premieres September 13 on Disney+.

The post New series offers an intimate look into how climate change impacts the lives of wildlife appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Scientists discover a cat-sized ancient koala in Australia https://www.popsci.com/environment/lumakoala-blackae-koala-australia/ Fri, 08 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=568844
An artist’s illustration of the 25 million year old Ditjimanka Lumakoala blackae, featuring (left to right) the wallaby-sized herbivore Muramura williamsi, an extinct koala relative named Madakoala devis,i and the calf-size lizard called Ilaria lawsone.
An artist’s illustration of the 25 million year old Ditjimanka Lumakoala blackae, featuring (left to right) the wallaby-sized herbivore Muramura williamsi, an extinct koala relative named Madakoala devis,i and the calf-size lizard called Ilaria lawsone. Peter Schouten

'Until now, there’s been no record of koalas ever being in the Northern Territory; now there are three different species from a single fossil site.'

The post Scientists discover a cat-sized ancient koala in Australia appeared first on Popular Science.

]]>
An artist’s illustration of the 25 million year old Ditjimanka Lumakoala blackae, featuring (left to right) the wallaby-sized herbivore Muramura williamsi, an extinct koala relative named Madakoala devis,i and the calf-size lizard called Ilaria lawsone.
An artist’s illustration of the 25 million year old Ditjimanka Lumakoala blackae, featuring (left to right) the wallaby-sized herbivore Muramura williamsi, an extinct koala relative named Madakoala devis,i and the calf-size lizard called Ilaria lawsone. Peter Schouten

Australia is currently home to the only living species of their endangered and iconic koalas, but there once were multiple species spread across the continent. Now, the discovery of another marsupial ancient relative is helping scientists fill in a 30 million year evolutionary gap. The findings are detailed in a study published September 4 in the journal Scientific Reports.

[Related: With bulging eyes and a killer smile, this sabertooth was an absolute nightmare.]

In 2014 and 2020, study co-author Arthur Crichton, a PhD student at Flinders University in Adelaide, Australia, found fossil teeth of the new species, named Lumakoala blackae, at the Pwerte Marnte Marnte fossil site in central Australia. The teeth are believed to be roughly 25 million years old. 

“Our computer analysis of its evolutionary relationships indicates that Lumakoala is a member of the koala family (Phascolarctidae) or a close relative, but it also resembles several much older fossil marsupials called Thylacotinga and Chulpasia from the 55 million-year-old Tingamarra site in northeastern Australia,” Crichton said in a statement

According to Chrichton, it was previously suggested that the enigmatic Thylacotinga and Chulpasia may have been more closely related to marsupials from South America.  This new discovery of Lumakoala suggests that they could actually be early relatives of herbivorous Australian marsupials including possums, kangaroos, koalas, and wombats.

“This group (Diprotodontia) is extremely diverse today, but nothing is known about the first half of their evolution due to a long gap in the fossil record,” said Crichton. 

If the study’s hypothesis is correct, the diprotodontian fossil record would be aged back by another 30 million years. Additionally, wombats, kangaroos, koalas and possums split off from other marsupials between roughly 65 million and 50 million years ago.

A chart comparing the upper molar morphology between Chulpasia jimthorselli, Lumakoala blackae and the modern koala.,
Comparison of upper molar morphology between Chulpasia jimthorselli, Lumakoala blackae, and the modern koala. CREDIT: A. Crichton (Flinders University)

“These Tingamarran marsupials are less mysterious than we thought, and now appear to be ancient relatives of younger, more familiar groups like koalas,” Robin Beck, study co-author and evolutionary biologist at the University of Salford in England, said in a statement. “It shows how finding new fossils like Lumakoala, even if only a few teeth, can revolutionize our understanding of the history of life on Earth.” 

The study also raises some new questions, including whether these relatives of herbivorous marsupials in Australia once lived in Antarctica and South America. According to Beck, some South American fossils look very similar to the marsupials found at the Tingamarra site. 

[Related: This 500-pound Australian marsupial had feet made for walkin.’]

It also reports that two other types of koala called Madakoala and Nimiokoala lived alongside Lumakoala and filled in different ecological niches in the forests that flourished in central Australia about 25 million years ago. The late Oligocene (about 23–25 million years ago) was  “kind of the koala heyday,” according to the Flinders University paleontologist and study co-author Gavin Prideaux.

“Until now, there’s been no record of koalas ever being in the Northern Territory; now there are three different species from a single fossil site,” Prideaux said in a statement. “While we have only one koala species today, we now know there were at least seven from the late Oligocene – along with giant koala-like marsupials called ilariids.”  

At this time, iliariids were the largest marsupials living in Australia, weighing in at up to 440 pounds. Iliariids lived alongside a strong-toothed wombat relative named Mukupirna fortidentata and a strange possum named Chunia pledgei.

The post Scientists discover a cat-sized ancient koala in Australia appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
1,000-year-old mummy with full head of hair and intact jaw found in Peru https://www.popsci.com/science/peru-mummy-hair/ Fri, 08 Sep 2023 12:00:00 +0000 https://www.popsci.com/?p=568836
A worker uncovers a mummy belonging to the pre-Inca Ychsma culture buried in a shallow funeral chamber on an ancient sanctuary during an excavation in the Huaca Pucllana, in the heart of a residential area in the district of Miraflores in Lima, on September 5, 2023.
A worker uncovers a mummy belonging to the pre-Inca Ychsma culture buried in a shallow funeral chamber on an ancient sanctuary during an excavation in the Huaca Pucllana, in the heart of a residential area in the district of Miraflores in Lima, on September 5, 2023. Cris Bouroncle/AFT via Getty Images

The remains were discovered in the middle of a modern neighborhood in Lima.

The post 1,000-year-old mummy with full head of hair and intact jaw found in Peru appeared first on Popular Science.

]]>
A worker uncovers a mummy belonging to the pre-Inca Ychsma culture buried in a shallow funeral chamber on an ancient sanctuary during an excavation in the Huaca Pucllana, in the heart of a residential area in the district of Miraflores in Lima, on September 5, 2023.
A worker uncovers a mummy belonging to the pre-Inca Ychsma culture buried in a shallow funeral chamber on an ancient sanctuary during an excavation in the Huaca Pucllana, in the heart of a residential area in the district of Miraflores in Lima, on September 5, 2023. Cris Bouroncle/AFT via Getty Images

A team of archaeologists have unearthed a roughly 1,000 year-old mummy with well-preserved brown hair in Peru’s capital city of Lima. The mummified remains were found alongside preserved textiles, ceramic vessels, and other objects at the Huaca Pucllana monument, a 82-foot tall clay pyramid with  an archaeological site hidden inside of a ceremonial grave. 

[Related: Machu Picchu was home to ancient people from all over South America.]

“This is an adult individual in a sitting position with bent legs,” head archaeologist Mirella Ganoza told Reuters. Ganoza noted that the mummy’s long hair and jaw were both nearly completely intact, but the sex of the individual is still unknown. 

Archaeologists have found other mummies and ancient offerings at the Huaca Pucllana site before. But there is still more to be uncovered, according to the team. Lima itself is home to about 400 sacred sites, with numerous archaeological ruins and mummies. Years of finds have been used to analyze the cultural, health, and social conditions of Indigenous Peruvians. In April, another 1,000 year old mummy was found about 15 miles from Lima at the Cajamarquilla archaeological site. Those remains were believed to be from an adolescent and some of the corpse’s skin was still distinguishable. It was found burried with at least 20 other individuals who are thought to be victims of human sacrifice.

Long before the Incas built their mountaintop royal retreat Machu Picchu or Spanish colonizers first arrived around 1527, Peru was home to multiple thriving pre-Hispanic cultures, including the Ychsma people. Huaca Pucllana was built by the Ychsma around 500 CE and is the heart of present-day Lima’s Miraflores district. It’s believed that the Ychsma used it as a cemetery. The Ychsma people are credited with building at least 16 pyramids, some of which are older than Egypt’s pyramids by about 4,000 years. The irrigation experts dominated the central coast of Peru until it was absorbed by the Inca empire around roughly 1468. The mummified remains themselves can be traced back about 1000 CE. 

[Related: Scientists use AI to help uncover elusive Nazca lines.]

“I find it quite interesting that right in the heart of Miraflores, in the middle of the city, surrounded by modern buildings and constructions, an important site is still preserved, the Huaca Pucllana ceremonial center,” Ganoza told Reuters.

Earlier this year, researchers discovered a similar mummy believed to be close to 3,000 years old in Lima. This mummy’s skull also had intact hair that was found inside of a cotton bundle before the rest of the remains were uncovered.  That mummy is believed to be from the Manchay culture, which developed between 1500 and 1000 BC in Lima’s valleys. The Manchay are associated with the construction of temples built in a U-shape that pointed toward the sunrise, according to Reuters

The post 1,000-year-old mummy with full head of hair and intact jaw found in Peru appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A newly spotted black hole keeps munching on a star the size of our sun https://www.popsci.com/science/black-hole-discovery-swiftj0230/ Thu, 07 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=568507
An optical image of the galaxy in which the new event occurred, taken from archival PanSTARRS data. The X-ray object was located to somewhere inside the white circle, which is about the size a pinhead 100m away would appear. The position of a 2 year old supernova is also shown.
An optical image of the galaxy in which the new event occurred, taken from archival PanSTARRS data. The X-ray object was located to somewhere inside the white circle, which is about the size a pinhead 100m away would appear. The position of a 2 year old supernova is also shown. Daniele B. Malesani/PanSTARRS

Luckily for us, the voracious Swift J0230 is 500 million light-years from the Milky Way.

The post A newly spotted black hole keeps munching on a star the size of our sun appeared first on Popular Science.

]]>
An optical image of the galaxy in which the new event occurred, taken from archival PanSTARRS data. The X-ray object was located to somewhere inside the white circle, which is about the size a pinhead 100m away would appear. The position of a 2 year old supernova is also shown.
An optical image of the galaxy in which the new event occurred, taken from archival PanSTARRS data. The X-ray object was located to somewhere inside the white circle, which is about the size a pinhead 100m away would appear. The position of a 2 year old supernova is also shown. Daniele B. Malesani/PanSTARRS

Just in time for spooky season, astronomers have detected a dark and hungry space monster. The newly spotted black hole named Swift J0230 is gradually eating huge chunks of a star that is very much like our own sun. Every time this star passes close to Swift J0230, it loses the equivalent mass of three Earths. The findings are described in a study published September 7 in the journal Nature Astronomy.

[Related: Astronomers used dead stars to detect a new form of ripple in space-time.]

A bright X-ray flash that seemed to come from the center of a nearby galaxy called 2MASX J02301709+2836050 first alerted a team of astronomers from the University of Leicester. This galaxy is about 500 million light-years away from the Milky Way and the black hole Swift J0230 was officially spotted via a new tool developed by the scientists at NASA’s Neil Gehrels Swift Observatory. 

The team scheduled more observations of this black hole and found that instead of decaying away as they expected, it would shine brightly for 7 to 10 days before abruptly switching off and repeating this process about every 25 days.

“Given that we found Swift J0230 within a few months of enabling our new transient-hunting tool, we expect that there are a lot more objects like this out there, waiting to be uncovered,” study co-author and University of Leicester astrophysicist Kim Page said in a statement

According to the team, similar behavior has been observed in quasi-periodic eruptions and periodic nuclear transients. This is where a star has its material ripped away by a black hole as it is orbiting close by. However, black holes can differ in how often they erupt and whether the eruption is predominantly in X-rays or optical light. The regularity of Swift J0230’s emissions fell somewhere between these two types of outbursts, suggesting that it could form the ‘missing link’ between them.

Now you don’t see it, now you do! X-ray images of the same location on the sky before (left) and after (right) Swift J0230 erupted. These images were taken with the X-ray Telescope on-board the Swift satellite. CREDIT: Phil Evans (University of Leicester) / NASA Swift
Now you don’t see it, now you do! X-ray images of the same location on the sky before (left) and after (right) Swift J0230 erupted. These images were taken with the X-ray Telescope on-board the Swift satellite. CREDIT: Phil Evans (University of Leicester) / NASA Swift

“This is the first time we’ve seen a star like our sun being repeatedly shredded and consumed by a low mass black hole,” study co-author and University of Leicester astronomer Phil Evans said in a statement. “So-called ‘repeated, partial tidal disruption’ events are themselves quite a new discovery and seem to fall into two types: those that outburst every few hours, and those that outburst every year or so. This new system falls right into the gap between these, and when you run the numbers, you find the types of objects involved fall nicely into place too.”

For the study, the team used models proposed for these two classes of events as a guide. They concluded that Swift J0230’s outbursts represent that a sun-sized star is in an elliptical orbit around a low-mass black hole smack in the center of its galaxy. As this star’s orbit takes it closer to the intense gravitational pull of the black hole, the material equivalent to the mass of three Earths is sucked from the star’s atmosphere and heated up as it plummets into the black hole. The intense heat is about 3.6 million degrees Fahrenheit and releases the surge of X-rays that the Swift satellite first detected. 

[Related: Black hole collisions could possibly send waves cresting through space-time.]

The team estimates that the black hole is about 10,000 to 100,000 times the mass of our sun—shockingly  small for the supermassive black holes that are usually found at the center of galaxies. By comparison, the black hole at the center of our own galaxy is believed to be about 4 million solar masses, while most are in the region of 100 million solar masses.

This is the first discovery for the new transient detector on the Swift satellite, which was developed by the University of Leicester team and running on their computers. 

“This type of object was essentially undetectable until we built this new facility, and soon after it found this completely new, never-before-seen event. Swift is nearly 20 years old and it’s suddenly finding brand new events that we never knew existed,” said Evans. “I think it shows that every single time you find a new way of looking at space, you learn something new and find there’s something out there you didn’t know about before.”

The team was supported by the UK Space Agency and the UK Science and technology Facilities Council (STFC).

The post A newly spotted black hole keeps munching on a star the size of our sun appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Millions of tons of waste could be eliminated by ‘nudging’ consumers to skip the plastic fork https://www.popsci.com/environment/single-use-plastic-cutlery-food-delivery/ Thu, 07 Sep 2023 19:00:00 +0000 https://www.popsci.com/?p=568540
Colorful plastic cutlery on a white background. The United States uses more than 36 billion plastic utensils every year.
The United States uses more than 36 billion plastic utensils every year. Deposit Photos

Prompts to skip single-use cutlery made a huge difference for reducing delivery food waste in China, according to a new study.

The post Millions of tons of waste could be eliminated by ‘nudging’ consumers to skip the plastic fork appeared first on Popular Science.

]]>
Colorful plastic cutlery on a white background. The United States uses more than 36 billion plastic utensils every year.
The United States uses more than 36 billion plastic utensils every year. Deposit Photos

Food delivery and take-out has had a renaissance in the past few years. Not only did it provide an economic lifeline to the restaurants amid the COVID-19 pandemic, but it also kept people safe and fed by limiting exposure to the virus. However, our to-go favorites often come with a huge side of waste. In 2021, over 400 million metric tons of plastic waste of all kinds was produced worldwide and the United States uses more than 36 billion plastic utensils every year. Plastic pollution is also expected to outpace the efforts to reduce waste and could even outpace coal’s greenhouse gas emissions by 2030.

[Related: How to make your takeout order less wasteful.]

Plastic cutlery from delivery orders presents new challenges, but a study published September 7 in the journal Science found that the “green nudges” that encourage customers to skip asking for cutlery with take-out orders were very successful. They could even be a new policy tool in reducing single-use waste. 

“Few policies target plastic waste production at the consumer level, except charges on plastic bags,” co-author and EPIC-China’s research director and Hong Kong University Business School economist Guojun He said in the statement. “Our findings show that simple nudges can make a big difference in changing consumers’ behaviors and could become a tool for policymakers as they confront the immense challenge of plastic waste.”

According to the team, reducing single-use cutlery waste in the food-delivery industry is particularly important in China as the country is the world’s largest producer and consumer of single-use cutlery. Over 540 million Chinese citizens were active users of food-delivery services as of 2019, consuming more than 50 million sets of single-use cutlery per day. In an effort to reduce waste, policy-makers set a target of reducing single-use cutlery usage in food deliveries by 30 percent by 2025.

For the study, the team worked with Chinese e-commerce giant Alibaba’s online food-ordering platform called Eleme. The platform is China’s second largest food-delivery company, with more than 753 million users last year, and is similar to DoorDash and Uber Eats in the United States. The team evaluated the effectiveness of Alibaba’s green nudges to reduce single-use cutlery consumption. These nudges included switching the default selection on the platform to “no cutlery” and including green points as rewards for not using the cutlery. Green points could then be redeemed to plant a tree under the customer’s name (but that’s a whole other can of worms).

They studied each user’s monthly food-ordering history for two years through 2019 to 2021 in 10 major Chinese cities. Of these cities, Beijing, Shanghai, and Tianjin had green nudges, while Qingdao, Xi’an, Guangzhou, Nanjing, Hangzhou, Wuhan, and Chengdu served as control cities without green nudges. They then randomly sampled about 200,000 active users who had placed at least one order between 2019 and 2020.

[Related: Are reusable takeout boxes worth the resources needed to make them?]

They found that changing the default to “no cutlery” and rewarding consumers with green points increased the share of no-cutlery orders by 648 percent, all without affecting Alibaba’s revenue.  If these green nudges were applied to all of China, the team found that more than 21.75 billion sets of single-use cutlery could be saved annually, eliminating 3.26 million metric tons of plastic waste. It could also potentially save 5.44 million trees annually since it would reduce the need for wooden chopsticks.

“Other food delivery platforms, such as UberEats and DoorDash, could try similar nudges to reduce cutlery consumption and plastic waste globally,” said He.

In other places in the world, efforts to trim down on unnecessary plastic have sprouted as well. In June, the “Skip the Stuff” rule went into effect in New York City, which aims to reduce single-use cutlery and condiments. Restaurants have until June 30, 2024 to comply before risking potential fines. The United Kingdom has also set a ban on single-use plastic cutlery set to go into effect in October. The European Union banned single-use cutlery among other types of plastic pollution in July 2021.  

The post Millions of tons of waste could be eliminated by ‘nudging’ consumers to skip the plastic fork appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Astronomers detect a distant galaxy’s magnetic field for the first time https://www.popsci.com/science/magnetic-field-galaxy-9io9/ Thu, 07 Sep 2023 12:00:00 +0000 https://www.popsci.com/?p=568497
A blue semi circle on the right with a ball of blue light on the left on a black background. The orientation of the magnetic field in the distant 9io9 galaxy, seen here when the universe was only 20 percent of its current age and the furthest ever detection of a galaxy’s magnetic field.
The orientation of the magnetic field in the distant 9io9 galaxy, seen here when the universe was only 20 percent of its current age and the furthest ever detection of a galaxy’s magnetic field. ALMA (ESO/NAOJ/NRAO)/J. Geach et al.

It took more than 11 billion years for the light from galaxy 9io9 to reach Earth.

The post Astronomers detect a distant galaxy’s magnetic field for the first time appeared first on Popular Science.

]]>
A blue semi circle on the right with a ball of blue light on the left on a black background. The orientation of the magnetic field in the distant 9io9 galaxy, seen here when the universe was only 20 percent of its current age and the furthest ever detection of a galaxy’s magnetic field.
The orientation of the magnetic field in the distant 9io9 galaxy, seen here when the universe was only 20 percent of its current age and the furthest ever detection of a galaxy’s magnetic field. ALMA (ESO/NAOJ/NRAO)/J. Geach et al.

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope have detected the magnetic field of a galaxy that is so far away from Earth, that its light has taken more than 11 billion years to get here. With the telescope, we are seeing this galaxy just as it was when our universe was only 2.5 billion years old.

[Related: Our universe mastered the art of making galaxies while it was still young.]

The findings are detailed in a study published September 6 in the journal Nature. Finally seeing this cosmic artifact could give astronomers some vital clues to how the magnetic fields of galaxies like the Milky Way came to be. Magnetic fields are present in many of the universe’s astronomical bodies from stars to planets and up to galaxies. 

“Many people might not be aware that our entire galaxy and other galaxies are laced with magnetic fields, spanning tens of thousands of light-years,” study co-author and University of Hertfordshire astrophysicist James Geach said in a statement.

It is not yet fully clear both how early in our universe’s lifetime and how quickly the magnetic fields in galaxies form. To date, astronomers have only mapped magnetic fields in galaxies close to us.

“We actually know very little about how these fields form, despite their being quite fundamental to how galaxies evolve,” study co-author and Stanford University extragalactic astronomer Enrique Lopez Rodriguez said in a statement

In this new study, the team used data from ALMA and the European Southern Observatory (ESO) and discovered a fully formed magnetic field in a distant galaxy. It’s similar in structure to what is observed in nearby galaxies, and while the magnetic field is about 1,000 times weaker than our planet’s magnetic field, it extends over more than 16,000 light-years.

Observing a fully developed magnetic field this early in the history of the universe is an indication that magnetic fields spanning entire galaxies can form pretty quickly, even while younger galaxies are still growing.  

According to the team, intense star formation in the universe’s early days may have played a role in accelerating the development of the magnetic fields and that the fields can influence how later generations of stars will eventually form. 

[Related: Secrets of the early universe are hidden in this chill galaxy cluster.]

These new findings show off the inner workings of galaxies, according to study co-author and ESO astronomer Rob Ivison. “The magnetic fields are linked to the material that is forming new stars,” Ivison said in a statement

To detect this light, the team searched for light emitted by dust grains in a distant galaxy named 9io9. When a magnetic field is present, galaxies are full of dust trains that tend to align and the light that they emit becomes polarized. When this happens, the light waves oscillate along a preferred direction instead of randomly. When ALMA detected and mapped the more polarized signal coming from galaxy 9io9, it confirmed the presence of a magnetic field in a very distant galaxy for potentially the first time. 

“No other telescope could have achieved this,” said Geach. 

The team hopes that with this new discovery and future observations of distant magnetic fields, astronomers will get closer to how fundamental components of galaxies form. 

The post Astronomers detect a distant galaxy’s magnetic field for the first time appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Leggy dinosaur species could be the latest feathery clue to bird evolution https://www.popsci.com/science/china-bird-dinosaur-discovery/ Wed, 06 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=568265
An artist’s illustration of Fujianvenator prodigiosus, an avialan theropod who lived during the Late Jurassic period and had a lower leg that was twice as long as its thigh.
An artist’s illustration of Fujianvenator prodigiosus, an avialan theropod who lived during the Late Jurassic period and had a lower leg that was twice as long as its thigh. ZHAO Chuang

The Fujianvenator prodigiosus was a pheasant-sized swamp creature that lived around 150 million years ago.

The post Leggy dinosaur species could be the latest feathery clue to bird evolution appeared first on Popular Science.

]]>
An artist’s illustration of Fujianvenator prodigiosus, an avialan theropod who lived during the Late Jurassic period and had a lower leg that was twice as long as its thigh.
An artist’s illustration of Fujianvenator prodigiosus, an avialan theropod who lived during the Late Jurassic period and had a lower leg that was twice as long as its thigh. ZHAO Chuang

A newly discovered early bird-like dinosaur species is filling in some of the holes in the dinosaur-to-bird evolutionary story. The new species, named Fujianvenator prodigiosus, has a strange mixture of physical features shared with other extinct prehistoric animals from therapod dinosaurs to birdlike troodontids. This unique beast was described in a study published September 6 in the journal Nature. 

[Related: Birds are dinosaurs, and this fossil detective has rooms full of bones to prove it.]

Birds diverged from theropod dinosaurs by the Late Jurassic (about 161 million to 146 million years ago), but the general understanding of the earliest evolution of the clade comprising most modern birds, known as Avialae, has been slowed due to a limited diversity of fossils from the Jurassic. No known avialans have been reported from the Yanliao Biota paleontological site in northeast China, which dates back to the Middle–Late Jurassic about 166–159 million years ago or in the the slightly younger German Solnhofen Limestones, which preserves an early genus of avian dinosaurs called Archaeopteryx. This leaves a gap of about 30 million years before the oldest known record of Cretaceous birds. 

Jurassic era avialans are a critical key to deciphering the evolutionary origin of the avialan body,  and this elusive group is key to piecing together the origin of birds. That’s where the fossilized remains of the 148 to 150-million-year-old avialan theropod Fujianvenator prodigiosus comes in. It has some physical traits shared with extinct avialans, the small and bird-like troodontids that lived during the Cretaceous Period, and theropod dinosaurs called dromaeosaurids that were similar to raptors and also lived during the Cretaceous. According to the team on this study, this mixture shows the impact of evolutionary mosaicism–different rates of evolutionary change in body structures and function– in early bird evolution.

An artist's illustration of the 150-million-year-old avialan theropod Fujianvenator prodigiosus. CREDIT: ZHAO Chuang
An artist’s illustration of the 150-million-year-old avialan theropod Fujianvenator prodigiosus. CREDIT: ZHAO Chuang.

A joint research team from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences in Beijing and the Fujian Institute of Geological Survey (FIGS) described and the avialan theropod that was found in Zhenghe County, Fujian Province in southeastern China.

“Our comparative analyses show that marked changes in body plan occurred along the early avialan line, which is largely driven by the forelimb, eventually giving rise to the typical bird limb proportion,” study co-author and paleontologist Min Wang from IVPP said in a statement. “However, Fujianvenator is an odd species that diverged from this main trajectory and evolved bizarre hindlimb architecture.”

[Related: Birds are so specialized to their homes, it shows in their bones.]

During the Late Jurassic-Early Cretaceious, southeastern China saw some intense tectonic activities that resulted in a lot of movement of magma below the Earth’s surface. This created some deep basins with the Earth including where Fujianvenator was found.

Fujianvenator prodigiosus was likely about the size of a present day pheasant and had a tibia (lower leg) that is twice as long as its femur (thigh), which is a previously unknown condition for non-avian dinosaurs. This suggests that the bird was either a high-speed runner or a long-legged wader and it likely lived in swamps. This new finding contrasts with other early avialans, which are believed to have been more tree and sky-dwelling.  

Fujianvenator’s remains were found among a diverse collection of vertebrate fossils dominated by aquatic and semiaquatic species, including turtles and ray-finned fish. The authors named this fossil collection the Zhenghe Fauna. This diverse array of inhabitants and environment suggests that it was the site of emerging Jurassic vertebrate fauna around the time when Fujianvenator was there. This find and timing fills in an important gap in our understanding of ecosystems in Late Jurassic Northeast Asia and the team plans to continue to explore Zhenghe and other nearby areas.

The post Leggy dinosaur species could be the latest feathery clue to bird evolution appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A ‘season of simmering’: This summer’s 3-month streak was hottest ever recorded https://www.popsci.com/environment/climate-change-2023-summer-un/ Wed, 06 Sep 2023 14:00:00 +0000 https://www.popsci.com/?p=568254
Vegetation makes its way through the drought-ridden earth on the shores of the Viñuela reservoir in Spain. The reservoir feeds the tropical crops of Axarquía, such as mangoes and avocados. It is in a phase of desiccation, with no water inflow, but consumption that has led the municipalities of Málaga to impose restrictions on the consumption of drinking water.
Vegetation makes its way through the drought-ridden earth on the shores of the Viñuela reservoir in Spain. The reservoir feeds the tropical crops of Axarquía, such as mangoes and avocados. It is in a phase of desiccation, with no water inflow, but consumption that has led the municipalities of Málaga to impose restrictions on the consumption of drinking water. Felipe Passolas/picture alliance via Getty Images

'Climate breakdown has begun,' says United Nations Secretary-General António Guterres.

The post A ‘season of simmering’: This summer’s 3-month streak was hottest ever recorded appeared first on Popular Science.

]]>
Vegetation makes its way through the drought-ridden earth on the shores of the Viñuela reservoir in Spain. The reservoir feeds the tropical crops of Axarquía, such as mangoes and avocados. It is in a phase of desiccation, with no water inflow, but consumption that has led the municipalities of Málaga to impose restrictions on the consumption of drinking water.
Vegetation makes its way through the drought-ridden earth on the shores of the Viñuela reservoir in Spain. The reservoir feeds the tropical crops of Axarquía, such as mangoes and avocados. It is in a phase of desiccation, with no water inflow, but consumption that has led the municipalities of Málaga to impose restrictions on the consumption of drinking water. Felipe Passolas/picture alliance via Getty Images

A new report from the United Nations World Meteorological Organization (WMO) found that Earth just experienced its hottest series of three months in a row on record. The data from the European Union-funded Copernicus Climate Change Service (C3S) found that global sea surface temperatures remained at “unprecedented highs” for the third month in a row.

[Related: July 2023 was likely the hottest month in 120,000 years.]

“Our planet has just endured a season of simmering—the hottest summer on record. Climate breakdown has begun. Scientists have long warned what our fossil fuel addiction will unleash,” United Nations Secretary-General António Guterres said in a statement. “Surging temperatures demand a surge in action. Leaders must turn up the heat now for climate solutions. We can still avoid the worst of climate chaos – and we don’t have a moment to lose.”

So far, 2023 is the second warmest year on record behind 2016,—a powerful El Niño year. The planet officially began an El Niño pattern in June, which can bring extreme temperatures and flooding worldwide. A report issued in May from the WMO warned that the warming pattern could temporarily heat the planet by 2.7 degrees Fahrenheit.

August 2023 was the hottest month on record and the second hottest month after July 2023, according to the Copernicus Climate Change Service ERA 5 dataset. As a whole, the month of August is estimated to have been around 2.7 degrees warmer than the preindustrial average for 1850-1900. 

Global monthly average sea surface temperatures were also the highest on record in August at 69.7 degrees. These temperatures exceeded the previous record set in March 2016 for every single day in August.

In Antarctica, sea ice extent (or coverage) is also at a record low level for this time of year, when the continent is experiencing its winter months. It is 12 percent below average, making for  the largest negative anomaly for August since satellite observations began in the late 1970s according to the WMO. This lack of sea ice can have devastating effects on Emperor penguins and other animals who live and breed in the region. 

On the opposite side of the planet in the Arctic, sea ice coverage was 10 percent below average, but still well above the record minimum set in August 2012.

[Related: July’s extreme heat waves ‘virtually impossible’ without climate change.]

“Eight months into 2023, so far we are experiencing the second warmest year to date, only fractionally cooler than 2016, and August was estimated to be around 1.5°C warmer than pre-industrial levels,” Carlo Buontempo, Director of the C3S’s  European Centre for Medium-Range Weather Forecasts, said in a statement. “What we are observing, not only new extremes but the persistence of these record-breaking conditions, and the impacts these have on both people and planet, are a clear consequence of the warming of the climate system.”

Summer 2023 will likely be one for the history books, with massive heat domes breaking temperature records throughout the southern United States, devastating flooding in Vermont and other parts of the Northeast, extreme temperatures fueling hurricanes in the exceedingly warm Atlantic Ocean and Gulf of Mexico, and a record wildfire season in Canada. Europe has also seen record breaking heat waves as the planet continues to see the effects of climate change.

“It is worth noting that this is happening BEFORE we see the full warming impact of the El Niño event, which typically plays out in the second year after it develops,”  WMO Secretary-General Petteri Taalas said in a statement

The post A ‘season of simmering’: This summer’s 3-month streak was hottest ever recorded appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Our tree-climbing ancestors evolved our abilities to throw far and reach high https://www.popsci.com/science/shoulder-evolution-primates/ Wed, 06 Sep 2023 12:00:00 +0000 https://www.popsci.com/?p=568244
Two monkeys sitting in a forest. Dartmouth researchers report that apes and early humans evolved more flexible shoulders and elbows than monkeys to safely get out of trees. For early humans, these versatile appendages would have been essential for gathering food and deploying tools for hunting and defense.
Dartmouth researchers report that apes and early humans evolved more flexible shoulders and elbows than monkeys to safely get out of trees. For early humans, these versatile appendages would have been essential for gathering food and deploying tools for hunting and defense. Luke Fannin, Dartmouth

Football season really started 20 million years ago with this evolutionary quirk.

The post Our tree-climbing ancestors evolved our abilities to throw far and reach high appeared first on Popular Science.

]]>
Two monkeys sitting in a forest. Dartmouth researchers report that apes and early humans evolved more flexible shoulders and elbows than monkeys to safely get out of trees. For early humans, these versatile appendages would have been essential for gathering food and deploying tools for hunting and defense.
Dartmouth researchers report that apes and early humans evolved more flexible shoulders and elbows than monkeys to safely get out of trees. For early humans, these versatile appendages would have been essential for gathering food and deploying tools for hunting and defense. Luke Fannin, Dartmouth

The mechanics of how athletes like New York Giants quarterback Daniel Jones’ are able to throw a perfect spiral or how wide receiver Darius Slayton may extend his elbow to reach for the catch may have ancient roots. These skills may have first evolved as a natural braking system for our primate ancestors who simply needed a safe way to get out of trees

[Related: Chilly climates may have forged stronger social bonds in some primates.]

In a study published September 6 in the journal Royal Society Open Science, a team from Dartmouth found that apes and early human ancestors likely evolved free-moving shoulders and flexible elbows as a way to slow their descent from trees while gravity pulled down on their bodies. Versatile appendages that could throw spears for hunting and defense, climb trees, and gather food were essential for survival—especially as early humans left forests for grassy savannas.

“There’s a lot we still don’t understand about the origin of apes,” study co-author and Dartmouth University paleoanthropologist Jeremy DeSilva tells PopSci. “There was a common ancestor to monkeys and apes that lived about 25 to 30 million years ago and then there was a divergence and now we have these two different kinds of primates. But why the convergence?”

One of the possibilities is different ecological, physical, and behavioral niches related to primate size. The first apes evolved about 20 million years ago and are bigger than other early primates. Getting out of a tree presented a new set of challenges for these bigger primates, since typically the bigger the animal, the greater the risk of injury from a fall. Natural selection would have eventually favored anatomies that allowed early apes to safely descend from the trees. 

In the study, the team used sports-analysis and statistical software to compare videos and still-frames of chimpanzees and small monkeys called mangabeys climbing in the wild. They saw that mangabeys and chimps climbed up the trees similarly, with their shoulders and elbows mostly bent close to the body. 

However, when it was time to climb down, chimpanzees extended their arms above their heads to hold onto branches, similar to how a person going down a ladder, as their weight pulls them down. This process called “downcliming” appears to be significant in the evolution of apes and early humans.

“Our study broaches the idea of downclimbing as an undervalued, yet incredibly important factor in the diverging anatomical differences between monkeys and apes that would eventually manifest in humans,” study co-author and Dartmouth graduate student Luke Fannin said in a statement

[Related: How to hike downhill safely and comfortably.]

These flexible shoulders and elbows passed on from ancestral apes would have allowed early humans such as Australopithecus to climb into trees at night for safety and then come down in the daylight unscathed. Once Homo erectus could use fire to protect itself at night, the human form took on the broader shoulders capable of a 90-degree twist that worked with free moving shoulders and elbows to make human ancestors excellent shots with a spear for hunting.

“The idea that downclimbing could be such a strong evolutionary force as to change the nature of how our bones and range of motion evolved was very fascinating,” study co-author Mary Joy tells PopSci. “Not a lot of the field really thinks about downclimbing as its own motion with implications on natural selection.” Joy brought her experience as a trail runner and athlete to the study to bring in a different perspective to looking at biological sciences and evolution. 

The team also used skeletal collections from Harvard University to study the anatomical structure of chimpanzee arm alongside remains in The Ohio State University’s collections to study  mangabey arms. Chimpanzees are more like humans than mangabeys and have a shallow ball-and-socket shoulder that allows for a greater range of movement. Chimps can also fully extend their arms due to a reduced length of bone located just behind the elbow called the olecranon process.

Three mangabeys in a tree. The researchers used sports-analysis software to compare the climbing movements of chimpanzees and mangabeys (pictured). They found that chimps support their greater weight when climbing down by fully extending their arms above their heads thanks to shallow, rounded shoulder joints and shortened elbow bones that are similar to those in humans. Mangabeys, which are built more like cats or dogs, have less flexibility and position their shoulders and elbows roughly the same when climbing up or down. CREDIT: Luke Fannin, Dartmouth
The researchers used sports-analysis software to compare the climbing movements of chimpanzees and mangabeys (pictured). They found that chimps support their greater weight when climbing down by fully extending their arms above their heads thanks to shallow, rounded shoulder joints and shortened elbow bones that are similar to those in humans. Mangabeys, which are built more like cats or dogs, have less flexibility and position their shoulders and elbows roughly the same when climbing up or down. CREDIT: Luke Fannin, Dartmouth.

Mangabeys and other monkeys are built more like four-legged animals like cats and dogs, with deep pear-shaped shoulder sockets and elbows that have a protruding olecranon process, which makes the joint look like the letter L. These joints are more stable, but they have a more limited range of movement and flexibility.

The analysis showed that the angle of a chimp’s shoulders was 14 degrees greater during their descent than when scaling a tree. The arm also extended outward at the elbow 34 degrees more when climbing down a tree than climbing up. The angles at which the mangabeys positioned their shoulders and elbows were only about four degrees or less when ascending a tree versus downclimbing.

“If cats could talk, they would tell you that climbing down is trickier than climbing up and many human rock climbers would agree. But the question is why is it so hard,” study co-author and 

anthropologist and evolutionary biologist Nathaniel Dominy said in a statement. “The reason is that you’re not only resisting the pull of gravity, but you also have to decelerate. 

[Related: Lucy, our ancient human ancestor, was super buff.]

According to DeSilva, the question of “how did we not see this before” in regards to downclimbing was one of the most surprising parts of the study. The fresh eyes of both Joy and graduate student Fannin were crucial in uncovering one of evolution’s hidden wonders. 

“Our evolutionary ancestry is this wonderful example of how evolution just sort of tinkers and tweaks pre-existing forms,” says DeSilva. “Our bodies are bodies that have been just tweaked and modified through natural selection over millions of years, to give us the bodies we have now, but there are all these wonderful echoes of our ancestry in our bodies today.”

The post Our tree-climbing ancestors evolved our abilities to throw far and reach high appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Paper cups still use plastic—and it’s a problem for the planet https://www.popsci.com/environment/paper-cups-environment-plastic/ Tue, 05 Sep 2023 18:00:00 +0000 https://www.popsci.com/?p=568035
Fiver different types of paper cups sitting are sitting on a table. Some have eco-friendly labeling and one warns of plastic chemical leaching. Paper cups are replacing plastic cups on the market, but paper cups can also be toxic to living organisms, shows a new study from the University of Gothenburg.
Paper cups are replacing plastic cups on the market, but paper cups can also be toxic to living organisms, shows a new study from the University of Gothenburg. Olof Lönnehed

A layer of plastic on paper cups used to keep hot drinks away from skin could be leaching toxic chemicals.

The post Paper cups still use plastic—and it’s a problem for the planet appeared first on Popular Science.

]]>
Fiver different types of paper cups sitting are sitting on a table. Some have eco-friendly labeling and one warns of plastic chemical leaching. Paper cups are replacing plastic cups on the market, but paper cups can also be toxic to living organisms, shows a new study from the University of Gothenburg.
Paper cups are replacing plastic cups on the market, but paper cups can also be toxic to living organisms, shows a new study from the University of Gothenburg. Olof Lönnehed

Much like the paper straws that were ushered in to reduce the use of single use plastic straws, paper cups may also be problematic for the environment. A study published in the August issue of the journal Environmental Pollution found that many paper cups are coated with a thin coating of plastic. This layer keeps liquids from seeping into the paper, but can emit toxic substances.

[Related: ‘Forever chemicals’ detected in paper and plastic straws.]

In the study, a team of researchers from the University of Gothenburg in Sweden tested the effect of disposable cups made from different materials on the larvae of the butterfly mosquito. The paper and plastic cups were placed in temperate water or sediment and were left to leach for up to four weeks. Then, the larvae were housed in aquariums that had the water or sediment that had been tainted by paper and plastic cups. 

The larvae grew less in the sediment regardless of the source of contamination.The exposure to the tainted water from both cup types appeared to hinder their development. 

“All of the mugs negatively affected the growth of mosquito larvae,” study co-author and ecotoxicologist and fish biologist Bethanie Carney Almroth said in a statement

Since paper isn’t resistant to either water or fats, the paper used to package foods and liquids needs to be treated with a top coat that protects the paper and user from what is inside. The plastic film is often made of a type of bioplastic called polylactide (PLA). Bioplastics are produced from renewable resources instead of much more frequently used fossil fuels. PLA is commonly produced from corn, cassava, or sugarcane and while it is often believed to be biodegradable, this study shows that it can still be toxic.

“Bioplastics do not break down effectively when they end up in the environment, in water. There may be a risk that the plastic remains in nature and resulting microplastics can be ingested by animals and humans, just as other plastics do. Bioplastics contain at least as many chemicals as conventional plastic,” says Carney Almroth.

Some of the chemicals in plastics are known to be toxic, while others are still unknown. According to the team, paper presents a potential health hazard compared to other materials and it is becoming more common as society shifts away from plastics and people become exposed to the chemicals in the plastic through contact with food. The team did not perform a chemical analysis to see which substances had leached from the paper cups and into the water and damaged the larvae, but they suspect it was a mixture of various chemicals. 

[Related: Plastic garbage in the sea is a life raft for pathogens.]

The carbon footprint of reusable plastic cups is tough to pin down, and scientists don’t know if they are better in terms of chemical leaching compared to their trashable counterparts. Some estimates find that a reusable cup must be used between 20 and 100 times to offset its greenhouse gas emissions when compared to a disposable cup, due to the high amount of energy needed to make these popular options durable and the hot water required to keep it clean. However, these reusable options do last longer and have better potential to offset the impacts of disposable cups. 

“When disposable products arrived on the market after the Second World War, large campaigns were conducted to teach people to throw the products away, it was unnatural to us! Now we need to shift back and move away from disposable lifestyles. It is better if you bring your own mug when buying take away coffee. Or by all means, take a few minutes, sit down and drink your coffee from a porcelain mug,” said Carney Almroth.

Currently, the United Nations is working to negotiate a binding agreement to end the spread of plastics.  Carney Almroth is a member of a council of scientists called the Scientists Coalition for an Effective Plastics Treaty (SCEPT) which contributes up-to-date scientific evidence to these negotiations. SCEPT is calling for a rapid phasing out of unnecessary and problematic plastics, as well as added vigilance to avoid the repeat mistakes of replacing one bad product with another.

“We at SCEPT are calling for transparency requirements within the plastics industry that forces a clear reporting of what chemicals all products contain, much like in the pharmaceutical industry,” said Carney Almroth. “But the main goal of our work is to minimize plastic production.”

The post Paper cups still use plastic—and it’s a problem for the planet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Couples often share more common traits than we might think https://www.popsci.com/science/dating-similar-traits/ Tue, 05 Sep 2023 14:05:00 +0000 https://www.popsci.com/?p=567898
A couple standing on the beach in warm sunlight.
Traits such as and religious attitudes, level of education, and certain measures of IQ showed particularly high correlations in a new study. Deposit Photos

Most opposite sex romantic partners share traits ranging from drinking habits to political leanings.

The post Couples often share more common traits than we might think appeared first on Popular Science.

]]>
A couple standing on the beach in warm sunlight.
Traits such as and religious attitudes, level of education, and certain measures of IQ showed particularly high correlations in a new study. Deposit Photos

Finding lasting love can be really difficult. We’ve all heard the annoying adages like “there’s plenty of fish in the sea,” not to mention the old “opposites attract” chestnut. However, many people tend to end up being quite similar to their partners, according to the results of a study published August 31 in the journal Nature Human Behaviour.

[Related: Social relationships are important to the health of aging adults.]

The new research included numerous studies dating back more than a century. The team examined 130 traits from millions of couples, ranging from political leanings to age of first sexual intercourse to substance use habits. For between 82 and 89 percent of traits analyzed, partners were more likely than not to be similar. In only one part of the analysis, and for only three percent of studied traits, did individuals tend to be coupled with someone who is demonstrates an opposing trait.

In addition to shedding light on some of those unseen forces that may shape human relationships, this research could have some important implications for the field of genetic research.

“A lot of models in genetics assume that human mating is random. This study shows this assumption is probably wrong,” study co-author and University of Colorado at Boulder psychologist and neuroscientists Matt Keller, said in a statement. Keller noted that a tendency called assortative mating—when individuals with similar traits couple up—can actually skew findings of genetic studies.

To find their results, the team conducted both a meta-analysis of previous research and their own original data analysis. In the meta-analysis, they examined 22 traits across 199 studies of millions of male-female co-parents, engaged pairs, married pairs, or cohabitating pairs. The oldest study in this analysis was conducted back in 1903. They also used a dataset called the UK Biobank to analyze 133 traits across almost 80,000 opposite-sex pairs in the United Kingdom.

Same sex couples were not included in the research because the patterns in these types of partnerships may differ significantly. The authors are now pursuing those relationships in a separate study.

[Related: These fuzzy burrowers don’t need oxytocin to fall in love.]

Traits such as political and religious attitudes, level of education, and certain measures of IQ showed particularly high correlations. For example, on a scale of 0 meaning no correlation and 1 meaning couples always share a trait, the correlation for political values was .58. Traits surrounding substance use also showed high correlations, with heavy drinkers, smokers, and teetotalers tending to strongly pair with those who share similar traits. Traits like height and weight, medical conditions, and personality showed much lower but still positive correlations. For example, the correlation for neuroticism was .11.

Interestingly, some traits, such as extroversion, did not have much of a correlation.

“People have all these theories that extroverts like introverts or extroverts like other extroverts, but the fact of the matter is that it’s about like flipping a coin: Extroverts are similarly likely to end up with extroverts as with introverts,” study co-author and University of Colorado at Boulder PhD student Tanya Horwitz said in a statement

The meta-analysis found “no compelling evidence” that on any trait that opposites attract. However, in the sample from the UK Biobank, the team did find a handful of traits in which there seemed to be a small negative correlation, including hearing difficulty, tendency to worry, and whether someone is more of a morning person or night person (called chronotype). Additional studies will be needed to understand those findings, according to the team. 

Some of the less-frequently studied traits including number of sexual partners and whether an individual had been breastfed as a child also showed some correlation.

“These findings suggest that even in situations where we feel like we have a choice about our relationships, there may be mechanisms happening behind the scenes of which we aren’t fully aware,” said Horwitz.

According to the authors, couples could share traits for a variety of reasons, including growing up in a similar area. Some people are simply attracted to those who are similar based on the traits studied, and some couples grow more similar the longer they stay in the relationship. 

These pairings could lead to some downstream genetic consequences. For example, if short people are more likely to produce offspring with a similar height and vice versa, there could be more people at the height extremes in the next generation. This same thing apply for medical, psychiatric, and other traits according to Horowitz. 

Some of the social implications include those with similar educational backgrounds continuing to pair up, which could widen socioeconomic divides.

The team cautions that the correlations found were fairly modest and should not be overstated or misused to promote an agenda. Assortative mating has historically been dangerously co-opted by the eugenics movement, which gained traction during the early 20th century.

The post Couples often share more common traits than we might think appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These toothy vegetarian dinosaurs have eluded paleontologists in Europe for decades https://www.popsci.com/science/rhabdodontid-dinosaur-europe/ Mon, 04 Sep 2023 12:00:55 +0000 https://www.popsci.com/?p=567519
Dinosaurs footprint in Serras de Aire e Candeeiros, Portugal.
Dinosaurs footprint in Serras de Aire e Candeeiros, Portugal. Deposit Photos

Rhabdodontids thrived when much of Europe was still an archipelago during the Late Cretaceous period.

The post These toothy vegetarian dinosaurs have eluded paleontologists in Europe for decades appeared first on Popular Science.

]]>
Dinosaurs footprint in Serras de Aire e Candeeiros, Portugal.
Dinosaurs footprint in Serras de Aire e Candeeiros, Portugal. Deposit Photos

While the big boy dinosaurs like the Triceratops and Tyrannosaurus rex dominated North America and still get most of the attention from today’s movies, they were not the only dinosaurs on Earth. Some of their very distant relatives actually called Europe home. These animals were much smaller than their American cousins, but are getting some renewed attention. A new paper recently published in the journal Fossil Record delves deeper into the lives of these island-dwelling dinos. 

[Related: A giant new spinosaur species has been unearthed in Spain.]

Between 100 and 66 million years ago (also known as the Late Cretaceous), Europe looked very different than it does today. The present day continent was actually an archipelago consisting of large and small islands in a shallow tropical sea. Partially due to their isolation on these islands, the dinosaur groups that lived here were different from those on the mainland. They included small and medium theropods, the feisty and armored ankylosaurs, sauropods with their signature long necks, duck billed hadrosaurs, and rhabdodontids.

According to the study, the Rhabdodontidae family was a critical group in the Late Cretaceous European Archipelago. It includes generally small to medium-sized—at least by dinosaur standards—herbivores that were about 6.5 to almost 20 feet long.

“They were probably habitually bipedal herbivores, characterized by a rather stocky build, with strong hind limbs, short forelimbs, a long tail, and a comparatively large, triangular skull that tapers anteriorly and ends in a narrow snout,” study co-author and University of Tübingen vertebrate paleontologist Felix Augustin explained in a statement. “They had a relatively robust skull with strong jaws, large teeth and a pointy beak that was covered in keratin, demonstrating that these dinosaurs were well-adapted to eating tough plants.”

There is also some evidence that they were rather social animals, as the fossilized remains of several individuals of different ages have been found grouped together. Fossils of rhabdodontids, or “rod tooth” dinosaurs, have also only been found in Europe in rocks going back 86 to 66 million years ago, suggesting they were endemic to the Late Cretaceous European Archipelago. 

Life reconstructions and size comparison of three rhabdodontids. From left to right: Mochlodon suessi from eastern Austria (the smallest member of the group), Rhabdodon priscus from southern France (the largest member of the group), and Transylvanosaurus platycephalus from western Romania (the most recently named member of the group). Also shown is the silhouette of a human (5.9 feet talll) for scale. CREDIT: Peter Nickolaus.
Life reconstructions and size comparison of three rhabdodontids. From left to right: Mochlodon suessi from eastern Austria (the smallest member of the group), Rhabdodon priscus from southern France (the largest member of the group), and Transylvanosaurus platycephalus from western Romania (the most recently named member of the group). Also shown is the silhouette of a human (5.9 feet tall) for scale. CREDIT: Peter Nickolaus.

Scientists have found fossils from nine different species from France, Spain, Austria, Hungary, and Romania.

“The first rhabdodontid species was scientifically named more than 150 years ago and the last one as recently as November 2022, so, although the group looks back to a long research history, we still have much to learn about it,” Augustin said. “Generally, our portraying of the world of dinosaurs is heavily biased towards the well-known North-American and Asian dinosaur faunas.”

[Related: Were dinosaurs warm-blooded or cold-blooded? Maybe both.]

The rhabdodontids in Western Europe died out 69 million years ago, possibly due to environmental shifts that affected the plants they ate. However, those in Eastern Europe survived for millions more years and were among the last non-avian dinosaurs still present before the end of the Cretaceous Period.

Dinosaur fossils dating to the Late Cretaceous are more rare in parts of Europe than in North America or Asia, and scientists are still on the hunt for a complete rhabdodontid skeleton. Even though they were abundant during the Cretaceous of Europe, paleontologists are still puzzled by more specifics of their body proportions, posture, locomotion, and feeding behavior.

“In the past decades, a wealth of new, and often well-preserved, rhabdodontid fossils has been discovered throughout Europe, the majority of which still remains to be studied,” Augustin said. “A joint research project is currently underway to study the available fossil material in order to gain new insights into the evolution and lifestyle of these fascinating yet still poorly known dinosaurs.”

The post These toothy vegetarian dinosaurs have eluded paleontologists in Europe for decades appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
See the stunning Supernova 1987A in a whole new light https://www.popsci.com/science/jwst-supernova-1987a/ Fri, 01 Sep 2023 13:00:00 +0000 https://www.popsci.com/?p=567509
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape.
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Science: NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH). Image Processing: Alyssa Pagan (STScI)

The remnants of an exploded blue supergiant star rest about 168,000 light-years away from Earth.

The post See the stunning Supernova 1987A in a whole new light appeared first on Popular Science.

]]>
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape.
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Science: NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH). Image Processing: Alyssa Pagan (STScI)

The James Webb Space Telescope (JWST) has taken some new images of a star that exploded during the Reagan Administration. The space telescope’s NIRCam (Near-Infrared Camera) helped capture the images of a world renowned supernova called Supernova 1987A (SN 1987A) in September 2022. The jaw-dropping new images were officially made public on August 31. 

[Related: An amateur astronomer spotted a new supernova remarkably close to Earth.]

Supernova 1987A is roughly 168,000 light-years away from Earth and located in the Large Magellanic Cloud–a satellite dwarf galaxy of the Milky Way. The supernova is the remnants of a blue supergiant star called Sanduleak–69 202. It was believed to hold a mass about 20 times that of the sun before the explosion was detected in February 1987. It is also the closest observed supernova since 1604, when Kepler’s Supernova illuminated the Milky Way. Supernova 1987A has been the target of observations at wavelengths ranging from gamma rays to radio waves for nearly 40 years. 

The latest image shows a central structure of inner ejecta similar to a keyhole. Clumpy gas and dust pack up the center that is ejected by the supernova explosion. According to NASA, the dust is so dense that even near-infrared light that Webb can detect can’t penetrate it, shaping the dark “hole” in the keyhole. 

Surrounding the inner keyhole is a bright equatorial ring which forms a band around the “waist” of the supernova which connects the two faint arms of hourglass-shaped outer rings. The equatorial ring is formed from material ejected tens of thousands of years before the supernova even exploded.. Bright hot spots in the ring appeared as the supernova’s shock wave hit it, and now exist externally to the ring, with diffuse emission surrounding it. These are where the supernova shocks hit more exterior material.

Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A), which has been annotated to highlight key structures. At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W). CREDITS: Science–NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH). Image ProcessinG–Alyssa Pagan (STScI).
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A), which has been annotated to highlight key structures. At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W). CREDITS: Science–NASA, ESA, CSA, Mikako Matsuura (Cardiff University), Richard Arendt (NASA-GSFC, UMBC), Claes Fransson (Stockholm University), Josefin Larsson (KTH). Image ProcessinG–Alyssa Pagan (STScI).

The Hubble and Spitzer Space Telescopes and the Chandra X-ray Observatory have also observed Supernova 1987A, but JWST’s sensitivity and spatial resolution abilities showed a new feature in this supernova remnant–small crescent-like structures. The crescents are believed to be part of the outer layers of gas that shot out from the supernova explosion. They are very bright, which may be an indication of an optical phenomenon called limb brightening. This results from being able to observe the expanding material in three dimensions. “The viewing angle makes it appear that there is more material in these two crescents than there actually may be,” NASA wrote in a press release.

Before JWST, the now-retired Spitzer telescope observed this supernova in infrared throughout its entire 16 year lifespan, providing astronomers with key data about how Supernova 1987A’s emissions evolved over time. However, Spitzer couldn’t observe the supernova with the same level of clarity and detail as JWST.  


[Related:
JWST captures an unprecedented ‘prequel’ to a galaxy.]

There are still several mysteries surrounding this supernova, namely some unanswered questions about the neutron star that should have formed in the aftermath of the supernova explosion. There is some indirect evidence for the neutron star in the form of X-ray emission that was detected by NASA’s Chandra and NuSTAR X-ray observatories. Additionally, some observations taken by the Atacama Large Millimeter/submillimeter Array indicate the neutron star may be hidden within one of the dust clumps at the heart of the remnant.

JWST will continue to observe the supernova over time, using the NIRSpec (Near-Infrared Spectrograph) and MIRI (Mid-Infrared Instrument) instruments that give astronomers the ability to capture new, high-fidelity infrared data over time. 

The post See the stunning Supernova 1987A in a whole new light appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The next frontier in saving the world’s heaviest parrots: genome sequencing https://www.popsci.com/environment/genomic-sequencing-kakapo/ Fri, 01 Sep 2023 12:00:00 +0000 https://www.popsci.com/?p=567328
A kākāpō sitting in its burrow. They can live up to 90 years and forage on the ground for food since they are flightless birds.
A kākāpō sitting in its burrow. They can live up to 90 years and forage on the ground for food since they are flightless birds. Jake Osborne

Kākāpō's were once considered 'doomed to early extermination.' Now these quirky New Zealand birds are slowly making a comeback.

The post The next frontier in saving the world’s heaviest parrots: genome sequencing appeared first on Popular Science.

]]>
A kākāpō sitting in its burrow. They can live up to 90 years and forage on the ground for food since they are flightless birds.
A kākāpō sitting in its burrow. They can live up to 90 years and forage on the ground for food since they are flightless birds. Jake Osborne

New Zealand’s quirky and critically endangered kākāpō have begun to return to the country’s mainland for the first time in almost 40 years. Kākāpōs are the heaviest parrots in the world, with some exceeding six pounds, and they have a lifespan of up to 90 years. Like penguins and ostriches, they can’t fly, so kākāpōs climb trees and forage on the ground for nuts and seeds to eat.  

[Related: A flightless parrot is returning to mainland New Zealand after a 40-year absence.]

The big, green, nocturnal birds used to be widespread across New Zealand, but were hunted to near extinction and threatened by non native predators like cats and dogs. Popular Science magazine described these “curious” green birds as already being “doomed to early extermination” all the way back in April 1895

The roughly 250 or so individual birds that are left are managed by New Zealand’s Department of Conservation (DOC) and the South Island’s Ngāi Tahu tribe on five islands that are free of predators. Now equipped with 21st Century genetic science, research platform Genomics Aotearoa is funding high-quality genetic sequencing of almost the entire kākāpō population. The results of an early study of how these full genomic sequences will help manage the health of these iconic birds was published August 28 in the journal Nature Ecology & Evolution.

Establishing genetic sequencing methods is not expected to only play a part in kākāpō survival, but other endangered species throughout New Zealand and the rest of the world. Conservation genomics is part of a growing trend in the field. In 2019, a team from San Diego and the University of Hawaii used advanced DNA sequencing technology to create a nearly complete genome assembly for Hawaii’s only remaining lineage of the crow family ‘alalā (Corvus hawaiiensis). The sequencing gave conservationists critical clues into the disease susceptibility, population-level diversity, and genetic load of the alalā to better inform their policies.

A close up of a female bird named Solstice. Solstice is one of New Zealand’s largest female kākāpōs, often weighing 4.5 pounds, even without the help of supplementary feeding. CREDIT: DOC.
Solstice is one of New Zealand’s largest female kākāpōs, often weighing 4.5 pounds, even without the help of supplementary feeding. CREDIT: DOC.

The same information could help the kākāpō thrive. This work over the last year has produced two very significant outcomes. First, it has given the team an in-depth understanding of kākāpō biology. It has also produced a high-quality code and reusable pipeline, which allows other researchers to rapidly use these methods in their own work and advanced New Zealand’s genomic capability.

“Kākāpō suffer from disease and low reproductive output, so by understanding the genetic reasons for these problems, we can now help mitigate them,” Andrew Digby, the DOC’s Science Advisor for Kākāpō Recovery, said in a statement. “It gives us the ability to predict things like kākāpō chick growth and susceptibility to disease, which changes our on-the-ground management practices and will help improve survival rates.”

[Related: Eavesdropping on pink river dolphins could help save them.]

Diby added that the Kakapo125+ project is another example of how genetic data can assist population growth. The 125 refers to the number of kākāpō living when the project began in 2015. “The novel genetic and machine learning tools developed can be applied to improve the productivity and survival of other taonga under conservation management,” said Digby.

The sequencing technique was developed by University of Otago microbial scientist Joseph Guhlin and an international team of researchers and could have impacts outside of New Zealand. 

“Using technology created by Google, we have achieved what is likely the highest quality variant dataset for any endangered species in the world,” said Guhlin. “This dataset is made available, through DOC and Ngai Tahu, for future researchers working with kākāpō.”

The post The next frontier in saving the world’s heaviest parrots: genome sequencing appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
An ‘ancestral bottleneck’ took out nearly 99 percent of the human population 800,000 years ago https://www.popsci.com/science/human-population-pleistocene/ Thu, 31 Aug 2023 19:00:00 +0000 https://www.popsci.com/?p=567219
Four skulls of human ancestors A. africanus, A. afarensis, H. erectus, H. neanderthalensis, and one modern human skull.
Four skulls of human ancestors A. africanus, A. afarensis, H. erectus, H. neanderthalensis, and one modern human skull. Deposit Photos

Only 1,280 breeding individuals may have existed at this dramatic era of human history.

The post An ‘ancestral bottleneck’ took out nearly 99 percent of the human population 800,000 years ago appeared first on Popular Science.

]]>
Four skulls of human ancestors A. africanus, A. afarensis, H. erectus, H. neanderthalensis, and one modern human skull.
Four skulls of human ancestors A. africanus, A. afarensis, H. erectus, H. neanderthalensis, and one modern human skull. Deposit Photos

A team of scientists from the United States, Italy, and China may have finally explained a large gap in the African and Eurasian fossil record. According to a model in a study published August 31 in the journal Science, the population of human ancestors crashed between 800,000 and 900,000 years ago. They estimate that there were only 1,280 breeding individuals alive during this transition between the early and middle Pleistocene. About 98.7 percent of the ancestral population was lost at the beginning of this ancestral bottleneck that lasted for roughly 117,000 years, according to the study.

[Related: Want more eye-opening science stories? Sign up for a PopSci newsletter.]

During the Late Pleistocene, modern humans spread outside of the African continents and other human species like Neanderthals began to go extinct. The Australian continent and the Americas also saw humans for the first time and the climate was generally cold. This era is best known for its massive ice sheets and glaciers that shifted around the planet and shaped many of the landforms we see on Earth today.. 

In this study, the team used a new method called fast infinitesimal time coalescent process (FitCoal), as a way to determine ancient demographic inferences with modern-day human genomic sequences from 3,154 people. 

“The fact that FitCoal can detect the ancient severe bottleneck with even a few sequences represents a breakthrough,” study co-author and University of Texas Health Science Center at Houston theoretical population geneticist Yun-Xin FU said in a statement.   

FitCoal helped the team calculate what this ancient loss of life and genetic diversity looked like utilizing present-day genome sequences from 10 African and 40 non-African populations.

“The gap in the African and Eurasian fossil records can be explained by this bottleneck in the Early Stone Age chronologically,” study co-author and Sapienza University anthropologist Giorgio Manzi said in a statement.  “It coincides with this proposed time period of significant loss of fossil evidence.”

Archaeology photo
The African hominin fossil gap and the estimated time period of chromosome fusion is shown on the right. CREDIT: Science.

Some of the potential reasons behind this population drop are mostly related to extremes in climate. Temperatures changed, severe droughts persisted, and food sources may have dwindled as animals like mammoths, mastodons, and giant sloths went extinct. According to the study, an estimated 65.85 percent of current genetic diversity may have been lost due to this bottleneck. The loss in genetic diversity prolonged a period of minimal numbers of humans who could successfully breed and was a major threat to the species. 

However, this bottleneck also may have contributed to a speciation event, which happens when two or more species are created from a single lineage. During this speciation event, two ancestral chromosomes may have converged to form what is now chromosome 2 in modern humans. Chromosome 2 is the second largest human chromosome, and spans about 243 million building blocks of DNA base pairs. Understanding this split helped the team pinpoint what could be the last common ancestor for the Denisovans, Neanderthals, and Homo sapiens (modern humans). 

[Related: Why you should sleep naked tonight, according to science]

“The novel finding opens a new field in human evolution because it evokes many questions, such as the places where these individuals lived, how they overcame the catastrophic climate changes, and whether natural selection during the bottleneck has accelerated the evolution of human brain,” co-author and East China Normal University evolutionary and functional genomics expert Yi-Hsuan PAN said in a statement.

In future studies, researchers could continue to find answers to how such a small population persisted in the face of climate adversity. It’s possible that learning to control fire and a climate that began to shift to be more hospitable to human life may have contributed to the rapid human population increase about 813,000 years ago.      

“These findings are just the start,” study co-author and Shanghai Institute of Nutrition and Health theoretical population geneticist and computational biologist LI Haipeng said in a statement. “Future goals with this knowledge aim to paint a more complete picture of human evolution during this Early to Middle Pleistocene transition period, which will in turn continue to unravel the mystery that is early human ancestry and evolution.”

The post An ‘ancestral bottleneck’ took out nearly 99 percent of the human population 800,000 years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Maine’s puffins show another year of remarkable resiliency https://www.popsci.com/environment/puffin-maine-rebound/ Thu, 31 Aug 2023 15:00:00 +0000 https://www.popsci.com/?p=567239
Two Atlantic puffins stand on a white rock above the ocean, with another group of puffins in the background, Atlantic puffins are sometimes nicknamed “sea parrots,” and their chicks hatch in Maine in early July.
Atlantic puffins are sometimes nicknamed “sea parrots,” and their chicks hatch in Maine in early July. Deposit Photos

Despite enormous challenges from climate change, the fledgling seabirds had their second consecutive rebound year.

The post Maine’s puffins show another year of remarkable resiliency appeared first on Popular Science.

]]>
Two Atlantic puffins stand on a white rock above the ocean, with another group of puffins in the background, Atlantic puffins are sometimes nicknamed “sea parrots,” and their chicks hatch in Maine in early July.
Atlantic puffins are sometimes nicknamed “sea parrots,” and their chicks hatch in Maine in early July. Deposit Photos

For the second year in a row, the Atlantic puffins living on the rocky islands off Maine’s coast had a rebound year for fledgling chicks, all in the face of record warm waters due to climate change. This second consecutive rebound year is welcome news, after 90 percent of nesting puffins failed to raise a single chick in 2021 while the climate change in New England has put this species, and others like humpback whales and the zooplankton at the base of the Gulfs food web, in jeopardy.

[Related: Cyclones can be fatal for seabirds, but not in the way you think.]

The Gulf of Maine and its bays are among the world’s fastest-warming bodies of water. Since the early 1980s, it has warmed about four degrees Fahrenheit, while the global ocean has risen by about 1.5 degrees Fahrenheit in the same period of time. The rising heat has affected the fish stocks in the area that puffins and other species rely on. Haddock used to make up a large portion of puffin diets, but populations have fluctuated in recent years, first increasing in 2017 due to federal management to this year showing signs of a decrease

However, a small eel-like fish called the sand lance has been abundant this year. The fish are only about four to eight inches long, but are high in fats and make them a great forage fish for seabirds. A 2020 study found that 72 Atlantic Ocean animal species from whales to bluefish to gannets eat sand lances in the waters from Greenland to North Carolina. 

According to the Maine Monitor, the sand lance were less abundant in the region by mid-July, but the puffins were found feasting on a mixture of haddock, hake, and redfish depending upon where they were. Don Lyons, the director of conservation science at National Audubon Society’s Seabird Institute, told the Maine Monitor, “I can’t offhand recall such a seamless transition from one fish to another. It tells you a lot about the resourcefulness of puffins and at the same time, it’s a reminder of how much we still don’t know of when and where food is for seabirds, and how fast that all can change.”

Lyons estimated that there are now as many as 3,000 puffins in Maine, what he calls a stable population. In 2022, about two-thirds of the puffins fledged—or developed wing feathers that are large enough for flight. While they didn’t reach that number this year, they had a better season than the catastrophic 2021 season despite a rainy and hot summer. The Audubon Society’s Project Puffin has been monitoring the population for 50 years and uses decoys, mirrors, and recordings to attract the birds to suitable nesting sites to raise the next generation of birds.

This cozy burrow 21 miles off the coast of Maine is where Atlantic puffins breed and raise their young. CREDIT: Audubon/Explore.org

Maine’s puffin population was once as low as 70 pairs on Matinicus Rock 25 miles off the coast. They were hunted for their feathers and meat in the early 20th Century, but by the 1970’s Audubon conservationists worked to grow puffin colonies in the state, by bringing chicks from Canada to Maine’s Eastern Egg Rock. Puffins still call that tiny rock home, in addition to Seal Island and Petit Manan Island. Live cams keep an eye on them and volunteers and scientists monitor their progress every year.

Currently, Maine’s population are the only breeding Atlantic puffins in the United States. The species lives in areas of the North Atlantic from Maine and Canada eastward to Europe. Iceland, a country well known for its puffins, has seen the puffin populations decline by 70 percent in 30 years largely due to lack of food due to warming oceans.

[Related: Emperor penguins suffer ‘unprecedented’ breeding failure as sea ice disappears.]

While this ability to reproduce despite huge environmental changes does speak to their resiliency as a species, puffins are still at risk of long term dangers from marine heat waves, sea level rise threatening nesting sites, and a loss of food.  

“The problem with climate change is these breeding failures and low breeding productivity years are now becoming chronic,” Bill Sydeman, president and chief scientist of the California-based Farallon Institute, told the AP. “There will be fewer young birds in the population that are able to recruit into the breeding population.”

Some of the ways to help Maine puffin population and other coastal birds in the face of this constant uncertainty include Audubon’s adopt-a-puffin program and advocating for your local seabirds by contacting regional elected officials.

The post Maine’s puffins show another year of remarkable resiliency appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
September’s night sky will sparkle with the Harvest Moon and a newly discovered comet https://www.popsci.com/science/stargazing-guide-september-2023/ Thu, 31 Aug 2023 11:00:00 +0000 https://www.popsci.com/?p=566899
The Harvest Moon on October 1, 2020 over a field in Waseca, Minnesota.
The Harvest Moon on October 1, 2020 in Waseca, Minnesota. Mike Linnihan/NASA

It's the last full supermoon of the year and ushers in autumn in the Northern Hemisphere.

The post September’s night sky will sparkle with the Harvest Moon and a newly discovered comet appeared first on Popular Science.

]]>
The Harvest Moon on October 1, 2020 over a field in Waseca, Minnesota.
The Harvest Moon on October 1, 2020 in Waseca, Minnesota. Mike Linnihan/NASA
September 1Aurigid Meteor Shower Predicted Peak
September 12Nishimura Comet Closest Approach
September 18Venus at Greatest Brightness
September 23Autumnal Equinox
September 29Full Harvest Supermoon

Summer skygazing season in the Northern Hemisphere is quickly drawing to a close.  September 1 marks the beginning of meteorological autumn, and we are racing towards the Autumnal Equinox. While the temperatures may finally start to get a little bit cooler, the night sky is staying pretty hot with a very bright Mercury beginning in mid-September, a meteor shower, and the last supermoon of the year. Here are some events to look out for this month and if you happen to get any stellar sky photos, please tag us and include #PopSkyGazers.

[Related: Climate change is affecting fall foliage, but not in the way you think.]

September 1- Aurigid Meteor Shower Predicted to Peak

The day after August’s Blue Moon, the Aurigid meteor shower is predicted to reach its peak. This meteor shower has been active since August 28 and will wrap up on September 5. From the eastern US, the shower will likely be visible around 11:30 PM each night when its radiant point rises above the eastern horizon. It is predicted to remain active until dawn breaks at around 5:51 AM. In the Sky estimates that viewers could see about five meteors an hour and that the bright moon will likely cause some viewing interference. 

September 12 – Nishimura Comet at Closest Approach

Anyone can buy a certificant to get a star named after them, but only the lucky can have comets named for them. That’s what happened earlier in August when Hideo Nishimura of Kakegawa, Japan was photographing the night sky and captured an image of Comet C/2023 P1 (Nishimura). The comet orbits the sun every 520 years and is expected to be at its closest approach to our planet this month, as long as it survives a cozy orbit around the sun even tighter than the planet Mercury’s loop. According to EarthSky, Comet Nishimura should become a binocular object during the first mornings of September if it survives its orbit. Observers with an unobstructed view to the east-northeastern horizon might get good binocular views of Comet C/2023 P1 (Nishimura) about 45 minutes before sunrise. It’s expected to pass at 78 million miles from Earth and does not pose any threat. 

[Related: ‘Oumuamua isn’t an alien probe, but it might be the freakiest comet we’ve ever seen.]

September 18 – Venus at its Greatest Brightness

In addition to the planet Mercury lighting up the sky most of this month, our solar system’s brightest planet will be at its most radiant around the middle of September. Venus will be shining brightly at a magnitude of -4.5 early in the morning in the eastern sky. It will continue to remain pretty bright for the rest of the month and reach its peak altitude until October 20.

September 23 – Autumnal Equinox 

Fall officially arrives in the Northern Hemisphere at 2:50 AM EDT on Saturday, September 23. The autumnal equinox occurs at the exact same moment around the world. It is the second equinox of the year, after March’s Spring equinox. During an equinox, the sun crosses an imaginary extension of Earth’s equator line called the celestial equator. The equinox happens precisely when the sun’s center passes through this imaginary line. In the Northern Hemisphere, the autumnal equinox happens when the sun crosses the equator from north to south. When the sun crosses from south to north, it marks the spring or vernal equinox, which is what happens in the Southern Hemisphere in September. 

The days will continue to get shorter than the nights, since the sun will rise later and set earlier. This continues up until the winter solstice in December, when the days begin to slowly grow longer again. 

[Related: We finally know why Venus is absolutely radiant.]

September 29 – Full Harvest Supermoon

September’s full moon, or the Harvest Moon, will reach its peak illumination at 5:58 AM EST. According to the Farmer’s Almanac, the full moon that happens nearest to the fall equinox always takes on the name Harvest Moon. The Harvest Moon also rises at roughly the same time, around sunset, for several consecutive evenings. This traditionally gives farmers several extra evenings of moonlight, helping them to finish harvesting before the frosts of fall are scheduled to arrive. This year’s Harvest Moon is also the last of four supermoons of 2023 and it will be 224,658 miles away from Earth. 

Additional names for September’s full moon include the Corn Moon or Mandaamini giizis in Anishinaabemowin (Ojibwe), the Gourd Moon or Wade Nuti in the Catawba Language of the Catawba Indian Nation, South Carolina, and the Falling Leaf Moon or Poneʔna-wueepukw Neepaʔuk in the Mahican Dialect of the Stockbridge-Munsee Band of Wisconsin.

The same skygazing rules that apply to pretty much all space-watching activities are key this month: Go to a dark spot away from the lights of a city or town and let the eyes adjust to the darkness for about a half an hour. 

The post September’s night sky will sparkle with the Harvest Moon and a newly discovered comet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Cremated remains still hold clues to life and death in the Bronze Age https://www.popsci.com/science/bronze-age-cremation-archeology/ Wed, 30 Aug 2023 18:30:00 +0000 https://www.popsci.com/?p=566926
A Late Bronze Age urn from Austria in roughly 1400-1300 BCE, containing cremated human remains. The urn is open on a table, with dusty pieces spilling out of it.
A Late Bronze Age urn from Austria in roughly 1400-1300 BCE, containing cremated human remains. L. Waltenberger.

Archaeologists can still decode the secrets of the past with burned prehistoric remains, but only with the help of other fields.

The post Cremated remains still hold clues to life and death in the Bronze Age appeared first on Popular Science.

]]>
A Late Bronze Age urn from Austria in roughly 1400-1300 BCE, containing cremated human remains. The urn is open on a table, with dusty pieces spilling out of it.
A Late Bronze Age urn from Austria in roughly 1400-1300 BCE, containing cremated human remains. L. Waltenberger.

Burial rites and other forms of grieving the dead possibly date back to the Neanderthals or even an extinct hominid species named Homo naledi. The ancient origins of these important social and emotional rituals for those left behind are still quite a mystery, and anthropologists are still piecing together how these practices have evolved over the course of humanity. With the help of some cutting edge technology, a team from Slovakia, Czech Republic, Belgium, and Austria was able to reconstruct the funerary process of two individuals whose burned remains were uncovered in urns dating back to late in the Bronze Age. The findings were published August 30 in the journal PLoS ONE.

[Related: Composting a human body, explained.]

Scientists studying these processes typically look at two different types of burials—traditional inhumation burials where the deceased is buried and urn burials in which the deceased’s remains are burned and stored in an urn. In many European countries, urn burials from prehistoric times are excavated by archaeologists before heading into the lab for further study. 

“For inhumation burials, if you have a complete human skeleton, it is possible to reconstruct a so-called osteobiography—a biography of the deceased individuals based on information obtained from the bones—pretty well,” study co-author and forensic anthropologist Lukas Waltenberger tells PopSci. Waltenberger is currently working at the University of Vienna and the Austrian Academy of Sciences.

According to Waltenberger, scientists can use the pelvis and features from the skull to determine the sex of the deceased, determine the age of death from bone and teeth development, and even theorize a cause of death from evidence of trauma. While the characteristic bone features needed for these kinds of analyses are often destroyed by the fire or during an excavation, scientists are not always completely out of luck.

“It is a modern myth that if a body is cremated, it will turn into ash,” says Waltenberger. “Bone fragments of up to 20 cm [7 inches] in length remain, which contain various information about the life of a person. By reading this information it is possible to tell an individual’s life history even after millenia.”

[Related: This 7th-century teen was buried with serious bling—and we now know what she may have looked like.]

For this study, Waltenberger received complete urn burials from Late Bronze Age Austria (roughly 1400-1300 BCE) that were first uncovered in 2021 and recorded and analyzed all of the material left behind in these urn burial. The interdisciplinary team combined traditional archaeological techniques with anthropology, computed tomography, archaeobotany, zooarchaeology, geochemistry, and isotopic approaches.

The team first used CT scans to virtually excavate the urns without tampering with them. Eventually, some of the large bone fragments were still recognizable and then started to crumble smaller pieces during the micro-excavation. They then performed osteological (bone) and strontium isotope analysis which revealed details about the individuals whose remains were inside of the urns.

“One urn contained the remains of a young adult female, who died in her twenties, the other one the remains of a 9 to 15 year-old child,” says Waltenberger. “The child showed signs for vitamin deficiencies (Vitamin C and D). So, it was not healthy.”

Digital reconstruction of the content of Urn 2. The 3D model allows a virtual excavation of the cremation burial. CREDIT: L. Waltenberger.

The isotope analysis revealed that both individuals were born in the present-day St. Pölten area of northeastern Austria area and likely lived there when they died. They also found evidence that both people had been cremated on a pyre with food offerings (meat from sheep or goat and red deer) and bronze jewelry. The female individual was also buried with the tooth fragments of a wild boar, which Waltenberger suspects probably would have been worn as a wristband or necklace. The urn also had traces of eight wild and five crop plant species from the region that were offered up as funeral offerings and used as fire accelerants. According to the team, this is the first known evidence for plant residues in a prehistoric cremation burial.

[Related: Details of life in Bronze Age Mycenae could lie at the bottom of a well.]

In future studies, similar interdisciplinary techniques could be to other urn burials to learn more about their prehistoric inhabitants. The team from this study has started to apply these techniques to a large sample of 1,000 cremation burials. 

“First results are very promising and already point towards local variation of funerary rites,” says Waltenberger. “It is possible to receive a comprehensive impression of the Late Bronze Age, if only researchers consider state-of-the-art techniques and look for this tiny traces of information like a detective.”

The post Cremated remains still hold clues to life and death in the Bronze Age appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Category 3 Hurricane Idalia makes landfall on Florida’s Gulf Coast https://www.popsci.com/environment/hurricane-idalia-florida/ Wed, 30 Aug 2023 16:00:00 +0000 https://www.popsci.com/?p=566914
A truck passes through flooded streets caused by Hurricane Idalia passing offshore on August 30, 2023 in Tarpon Springs, Florida.
A truck passes through flooded streets caused by Hurricane Idalia passing offshore on August 30, 2023 in Tarpon Springs, Florida. Joe Raedle/Getty Images

Fueled in part by record warm ocean temperatures, Idalia is the strongest storm to hit the Big Bend region in over 125 years

The post Category 3 Hurricane Idalia makes landfall on Florida’s Gulf Coast appeared first on Popular Science.

]]>
A truck passes through flooded streets caused by Hurricane Idalia passing offshore on August 30, 2023 in Tarpon Springs, Florida.
A truck passes through flooded streets caused by Hurricane Idalia passing offshore on August 30, 2023 in Tarpon Springs, Florida. Joe Raedle/Getty Images

Hurricane Idalia made landfall this morning near Keaton Beach in northern Florida’s Big Bend region. The Category 3 storm hit with maximum sustained winds of 125 miles per hour with the potential for higher gusts. Idalia is the strongest storm to make landfall in Big Bend, the link between the peninsula and panhandle, in more than 125 years.

[Related: What hurricane categories mean, and why we use them.]

Idalia was downgraded to a Category 2 storm with maximum sustained winds of 110 MPH, as of the National Hurricane Centers’ 9 AM update. The storm is moving northeast and the National Hurricane Center is warning of “catastrophic impacts” from storm surge. Parts of the Big Bend region could see up to 16 feet of storm surge. Heavy rainfall is expected, with up to six inches of rain expected in the St. Marks/Apalachee Bay area. Flooding began hours before landfall on Treasure Island, a barrier island on the Gulf Coast, where a high tide at 11:30 AM EDT could create even more storm surge and flooding. 

Hurricane Idalia's peak storm surge forecast, showing 7 to 11 feet in the Big Bend region.
Idalia’s peak storm surge forecast. CREDIT: National Hurricane Center.

Clearwater Beach is seeing a storm surge between five and six feet while nearby Cedar Key is experiencing between eight and nine feet of storm surge. The water is rising rapidly even during a normal low tide period.

A significant surge between four and five feet into Tampa Bay and it set a new record for water levels in the bay before landfall. At 5:30 AM EDT, water levels were at 3.91 feet over and still rising, even as the tide should be lowering. The previous high water mark was 3.79 feet during Tropical Storm Eta in 2020. The I-275 traffic cams showed abandoned streets and water coming up onto the streets

A traffic camera photograph of I-275 in Tampa, showing water coming over a barrier and onto the street.
Flooding on Interstate 275 in Tampa Bay. CREDIT: Florida Department of Transportation.

The hurricane is expected to retain some strength after landfall, as it moves into northern Florida through Wednesday and then into southeastern Georgia by Wednesday afternoon. Damaging winds are also expected beyond the center of the hurricane. 

Overnight, Idalia intensified into an extremely dangerous Category 4 hurricane with winds of 130 mph. Despite the downgrade to a Category 3, Idalia is still very dangerous. “Radar and Air Force Reserve Hurricane Hunter aircraft data indicate that an eyewall replacement cycle has begun,” the National Hurricane Center wrote. “Idalia’s maximum sustained winds are now estimated near 125 mph (205 km/h) with higher gusts. This change in wind speed does not diminish the threat of catastrophic storm surge and damaging winds.”

[Related: The future of hurricanes is full of floods—a lot of them.]

These recent storms have fed on the increasingly warm ocean temperatures in the Gulf of Mexico that fuel more intense hurricanes, and scientists have been sounding the alarm on the repercussions of this for decades. In September 1995, Popular Science magazine featured a warning of a possible wave of killer hurricanes from hurricane forecaster William Gray from Colorado State University. “We’ve gone 25 years with relatively little activity–a long cycle by historical standards. Inevitably, long stretches of destruction will return. Florida and the East Coast will see hurricane devastation such as they’ve never experienced before,” Gray said

As Hurricane Idalia moved over the Gulf of Mexico, the storm was able to feed on the energy from this year’s record warm temperatures, which could only add to its devastation.  “It’s 88, 89 degrees [Fahrenheit] over where the storm’s going to be tracking, so that’s effectively rocket fuel for the storm,” Colorado State University hurricane researcher Phil Klotzbach told the AP. “It’s basically all systems go for the storm to intensify.”

Idalia is the third hurricane to make landfall in Florida in the last 12 months. Hurricane Ian slammed the Gulf Coast in September 2022 as a Category 5 storm, killing at least 161 people and causing roughly $113 billion dollars in damage. Only about two months later Hurricane Nicole hit as a late season Category 1 storm.  Hurricanes that begin with the letter “I” are also the most retired names due to their destructive nature and Idalia could be the next storm added to that list. 

The post Category 3 Hurricane Idalia makes landfall on Florida’s Gulf Coast appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A three-eyed organism roamed the seas half a billion years ago https://www.popsci.com/environment/three-eyed-cambrian-arthropod/ Wed, 30 Aug 2023 13:00:00 +0000 https://www.popsci.com/?p=566874
An artistic reconstruction of Kylinxia, a relative of present day insects and crustaceans. It has two extended forelimbs, a round and segmented body, and three eyes on its head.
An artistic reconstruction of Kylinxia, a relative of present day insects and crustaceans. X. Wang

The shrimpy creature is filling in some evolutionary gaps.

The post A three-eyed organism roamed the seas half a billion years ago appeared first on Popular Science.

]]>
An artistic reconstruction of Kylinxia, a relative of present day insects and crustaceans. It has two extended forelimbs, a round and segmented body, and three eyes on its head.
An artistic reconstruction of Kylinxia, a relative of present day insects and crustaceans. X. Wang

A newly discovered three-eyed relative is disappointingly unrelated to the eerie three-eyed ravens of Game of Thrones. But this Cambrian-era beast is a relative of today’s insects and boasts some fearsome limbs. The unique fossilized animal was described in a study published August 28 in the journal Current Biology

[Related: This ancient ‘mothership’ used probing ‘fingers’ to scrape the ocean floor for prey.]

The animal, scientific name Kylinxia, was found in 520 million year old rocks in a fossil deposit called the Cambrian Chengjiang biota near the town of Chengjiang in southern China. More than 250 species of exceptionally well-preserved fossil organisms have already been described from this location, which gives scientists a glimpse of what was going on in the world’s oceans as they developed. 

Importantly, Kylinxia is filling in some evolutionary gaps in our understanding of the evolution of animals known as arthropods. This phylum of animals includes insects, crabs, shrimp, scorpions, spiders, and centipedes among others. Arthropods have an exoskeleton made of a tough material called chitin that is mineralized with calcium carbonate, as well as a body divided into segments and paired jointed appendages. They are considered some of Earth’s most successful species and over 85 percent of all known animal species are classified as arthropods.

Kylinxia was about the size of a large shrimp, had a pair of limbs that it likely used to catch prey, and a signature trio of eyes on its head. 

“Most of our theories on how the head of arthropods evolved were based on these early-branching species having fewer segments than living species,” Greg Edgecombe, a co-author of the study and arthropod evolution expert at London’s Natural History Museum, said in a statement. “Discovering two previously undetected pairs of legs in Kylinxia suggests that living arthropods inherited a six-segmented head from an ancestor at least 518 million years ago.”

After its initial discovery, Kylinxia was imaged using a CT scanner. The scan revealed that more soft parts of the animals’ anatomy were also buried in the rock. While there are plenty of species of arthropods preserved in the fossil record, most fossils only preserve the hard skeletons. 

[Related: Newly discovered fossils give a whole new meaning to jumbo shrimp.]

“The preservation of the fossil animal is amazing,” study co-author and University of Leicester PhD student Robert O’Flynn said in a statement. “After CT-scanning we can digitally turn it around and literally stare into the face of something that was alive over 500 million years ago. As we spun the animal around, we could see that its head possesses six segments, just as in many living arthropods.”

CT images of the fossil animal Kylinxia zhangi from southern China, courtesy of Professor Yu Liu, Yunnan University. The animal is the size of a large shrimp, with its front end to the right. The top image clearly shows the segmentation of the body and the large eyes at the front. The bottom image shows the large frontal limbs extended.
CT images of the fossil animal Kylinxia zhangi from southern China, courtesy of Professor Yu Liu, Yunnan University. The animal is the size of a large shrimp, with its front end to the right. The top image clearly shows the segmentation of the body and the large eyes at the front. The bottom image shows the large frontal limbs extended. CREDIT: Professor Yu Liu, Yunnan University.

This new specimen was nearly complete, which enabled the team to identify the six segments that made up its body: the head, a second segment with its grasping limbs, and the other four segments which have a pair of jointed limbs.

“Robert and I were examining the micro-CT data as part of his doctoral thesis in the hope of refining and correcting previous interpretation of head structures in this genus, Kylinxia,” study co-author and Yunnan Key Laboratory for Palaeobiology paleobiologist Yu Liu said in a statement. “Amazingly, we found that its head is composed of six segments, as in, e.g., insects.”

The post A three-eyed organism roamed the seas half a billion years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The Whirlpool Galaxy’s buff, spiral arms grab JWST’s attention https://www.popsci.com/science/jwst-whirlpool-galaxy/ Tue, 29 Aug 2023 20:00:00 +0000 https://www.popsci.com/?p=566625
A large spiral galaxy takes up the entirety of the image. The core is mostly bright white, but there are also swirling, detailed structures that resemble water circling a drain. There is white and pale blue light that emanates from stars and dust at the core’s center, but it is tightly limited to the core. The rings feature colors of deep red and orange and highlight filaments of dust around cavernous black bubbles.
In this new image of M51 taken by the James Webb Space Telescope, the dark red regions trace the filamentary warm dust permeating the medium of the galaxy. The orange and yellow portions show areas of ionized gas created by recently formed star clusters. ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team

M51 is a grand-design spiral galaxy about 25 million light-years away from Earth and boasts very well-developed arms.

The post The Whirlpool Galaxy’s buff, spiral arms grab JWST’s attention appeared first on Popular Science.

]]>
A large spiral galaxy takes up the entirety of the image. The core is mostly bright white, but there are also swirling, detailed structures that resemble water circling a drain. There is white and pale blue light that emanates from stars and dust at the core’s center, but it is tightly limited to the core. The rings feature colors of deep red and orange and highlight filaments of dust around cavernous black bubbles.
In this new image of M51 taken by the James Webb Space Telescope, the dark red regions trace the filamentary warm dust permeating the medium of the galaxy. The orange and yellow portions show areas of ionized gas created by recently formed star clusters. ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team

The James Webb Space Telescope (JWST) has captured a stellar new image of the Whirlpool Galaxy (aka M51 or NGC 5194), a grand-design spiral galaxy about 27 million light-years away from Earth. According to the European Space Agency (ESA), grand-design spiral galaxies like this one have prominent, well-developed spiral arms, unlike other spiral galaxies that have more ragged or disrupted spiral arms. 

[Related: Herschel Space Telescope’s First Images Give Promising Glimpse of What’s to Come.]

M51 lies in the constellation Canes Venatici (or The Hunting Dogs) and is trapped in a bit of a tumultuous relationship with the dwarf galaxy NGC 5195. The interaction between these two galactic neighbors has been one of the more well studied galaxy pairs in the sky. M51’s gravitational influence on its smaller companion is believed to be partially responsible for the grand nature of its prominent and distinct spiral arms. 

This new galactic portrait uses data from JWST’s Near-InfraRed Camera (NIRCam) and Mid-InfraRed Instrument (MIRI). This new observation is one of a series of observations collectively titled Feedback in Emerging extrAgalactic Star clusTers (FEAST). The FEAST observations were designed for astronomers and the public to learn more about stellar feedback and star formation environments outside of the Milky Way galaxy. 

Stellar feedback describes the outpouring of energy from stars into the environments which form them. It is a crucial process in determining the rates at which stars form, and is important to building accurate models of star formation. 

“Stellar feedback has a dramatic effect on the medium of the galaxy and creates a complex network of bright knots as well as cavernous black bubbles,” the ESA wrote in a statement

In the new image, the dark red regions trace the filamentary warm dust permeating the medium of the galaxy. These rosy regions show the reprocessed light from complex molecules forming on dust grains. The orange and yellow portions show areas of ionized gas created by recently formed star clusters.

A large spiral galaxy takes up the entirety of the image. The core is mostly bright white, but there are also swirling, detailed structures that resemble water circling a drain. There is white and pale blue light that emanates from stars and dust at the core’s center, but it is tightly limited to the core. The rings feature colors of deep red and orange and highlight filaments of dust around cavernous black bubbles
Unlike the menagerie of weird and wonderful spiral galaxies with ragged or disrupted spiral arms, grand-design spiral galaxies boast prominent, well-developed spiral arms like M51. CREDIT: ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team.

Before JWST became operative in 2022, other observatories including those made at the Atacama Large Millimetre Array in the Chilean desert and the Hubble Telescope gave astronomers a glimpse of star formation. These observations occurred at either the onset, when the dense gas and dust clouds where stars will form, or after the stars have been destroyed with their energy their natal gas and dust clouds. JWST is opening up a new observational window to the earlier stages of star formation and stellar light. 

“Scientists are seeing star clusters emerging from their natal cloud in galaxies beyond our local group for the first time. They will also be able to measure how long it takes for these stars to pollute with newly formed metals and to clean out the gas (these time scales are different from galaxy to galaxy),” wrote the ESA.

[Related: Our universe mastered the art of making galaxies while it was still young.]

More observations and study of these processes is expected to lead to a better understanding of how the whole star formation cycle and metal enrichment process are regulated within galaxies. It also could help present a more clear time scale for when planets and brown dwarfs form because once gas and dust is removed from newly formed stars, there isn’t any material left to form planets.

The post The Whirlpool Galaxy’s buff, spiral arms grab JWST’s attention appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Remnants of an ancient Roman society found buried in the Alps https://www.popsci.com/science/roman-switzerland-alps-archeology/ Tue, 29 Aug 2023 16:00:00 +0000 https://www.popsci.com/?p=566571
Part of the exposed Roman walls with the room layout already recognizable. The remains of the floor construction are still preserved in the foreground of the picture.
Part of the exposed Roman walls with the room layout already recognizable. The remains of the floor construction are still preserved in the foreground of the picture. ADA Zug/David Jecker

The ‘archaeological sensation’ houses a treasure trove of objects that likely belonged to the region’s elite.

The post Remnants of an ancient Roman society found buried in the Alps appeared first on Popular Science.

]]>
Part of the exposed Roman walls with the room layout already recognizable. The remains of the floor construction are still preserved in the foreground of the picture.
Part of the exposed Roman walls with the room layout already recognizable. The remains of the floor construction are still preserved in the foreground of the picture. ADA Zug/David Jecker

For the first time in almost a century, a team of archaeologists have discovered stone walls dating back to the Roman Empire in Zug, Switzerland. The Alpine state in the central portion of the country is known for hockey, beautiful scenery, and some exciting archaeological finds. In a translated press release, the Office for the Preservation of Monuments and Archeology called the finding an “archaeological sensation” for the region that could offer more insight into Roman activity in central Switzerland.

[Related: Bronze Age cauldrons show we’ve always loved meat, dairy, and fancy cookware.]

While excavating a gravel pit in the city of Äbnetwald, a team uncovered the 2,000-year-old Roman walls that possibly once protected a building complex. They have also found some iron nails, pieces of plaster wall, gold fragments possibly from jewelry, millstones, glassware, crockery, bowls, and ceramic jugs called amphorae.

Archaeologists also found evidence that some elite people lived at the site, including imported Roman tableware called terra sigillata and some detailed glass vessels. During this time, amphorae jars typically held fish sauce, wine, or olive oil and provide some evidence that the Romans in the region traded with Mediterranean countries. 

Small selection of Roman finds (from top left to bottom right): An amphora base, the shard of a mortar, the rim of a small bowl of Roman tableware with a red coating (terra sigillata), four coins in as-found condition, one of which was silver from Julius Caesar, Fragment of a gold object, pieces of a square bottle and a blue glass ribbed bowl. CREDIT: ADA Zug, Res Eichenberger
Small selection of Roman finds (from top left to bottom right): An amphora base, the shard of a mortar, the rim of a small bowl of Roman tableware with a red coating (terra sigillata), four coins in as-found condition, one of which was silver from Julius Caesar, Fragment of a gold object, pieces of a square bottle and a blue glass ribbed bowl. CREDIT: ADA Zug/Res Eichenberger

According to the team, it is not surprising that this elevated position near the city of Äbnetwald was selected as the location for their buildings. It offered an excellent overview of the surrounding landscape. A gravel hill nearby was already inhabited several thousand years before the Romans came, indicating that it was already prime real estate.  

The walls extended to at least 5,300 square feet and it is still unclear how the site was used. According to Christa Ebnöther, a professor of archeology of the Roman provinces at the University of Bern, it could have been a villa that had a view of a temple building.

[Related: Pompeii’s archaeological puzzles can be solved with a little help from chemistry.]

“We were also amazed that the top bricks were even visible above ground. Only a few structural relics of this kind from the Roman period are known in the pre-Alpine region—in contrast to other regions. What is also astounding is the relatively good preservation of the remains,” said Ebnöther.

The team also found multiple bronze and copper coins. A silver denarius minted by Julius Caesar from around the First Century BCE with an elephant trampling on either a snake or a dragon etched into it was found amongst them. 

In addition to copper and bronze coins, a silver coin (denarius) of Julius Caesar from the 1st century BCe was also found.The face of the coin shows an elephant trampling on a dragon or snake. CREDIT: ADA Zug, Res Eichenberger.
In addition to copper and bronze coins, a silver coin (denarius) of Julius Caesar from the 1st century BCe was also found.The face of the coin shows an elephant trampling on a dragon or snake. CREDIT: ADA Zug/Res Eichenberger.

Previously, archaeologists have uncovered other valuable finds in this area, such as a number of coins from the ancient Celts, the remains of a settlement dating to the middle of the Bronze age, and evidence of burials from the late Bronze age

On Saturday, September 2nd, the general public is invited to tour the excavation and learn more about the Romans who lived in pre-Alpine Central Switzerland.  

The post Remnants of an ancient Roman society found buried in the Alps appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
‘Alive and wriggling’ worm survived in woman’s body and brain for at least a year https://www.popsci.com/health/roundworm-parasite-human-brain/ Tue, 29 Aug 2023 14:00:00 +0000 https://www.popsci.com/?p=566489
A magnetic resonance image of the patient’s brain by fluid-attenuated inversion recovery showing an enhancing right frontal lobe lesion (left). A live third-stage larval form of Ophidascaris robertsi removed from the patient’s right frontal lobe (right).
A magnetic resonance image of the patient’s brain by fluid-attenuated inversion recovery showing an enhancing right frontal lobe lesion (left). A live third-stage larval form of Ophidascaris robertsi removed from the patient’s right frontal lobe (right). Hossain M/Kennedy KJ/Wilson HL

The parasite and larvae known to plague pythons highlights the growing danger of zoonotic transmission.

The post ‘Alive and wriggling’ worm survived in woman’s body and brain for at least a year appeared first on Popular Science.

]]>
A magnetic resonance image of the patient’s brain by fluid-attenuated inversion recovery showing an enhancing right frontal lobe lesion (left). A live third-stage larval form of Ophidascaris robertsi removed from the patient’s right frontal lobe (right).
A magnetic resonance image of the patient’s brain by fluid-attenuated inversion recovery showing an enhancing right frontal lobe lesion (left). A live third-stage larval form of Ophidascaris robertsi removed from the patient’s right frontal lobe (right). Hossain M/Kennedy KJ/Wilson HL

A neurosurgeon in Australia pulled a live, three inch-long worm from the brain of a 64-year-old woman in June 2022. The roundworm Ophidascaris robertsi is native to Australia and its larvae were also present in other organs in the patient’s body, including the liver and lungs. This is the first known human case of this parasitic infection and it is described in a case study published in the September 2023 issue of the journal Emerging Infectious Diseases.

[Related: Rare parasites found in 200 million-year-old reptile poop.]

The patient was first admitted to her local hospital in late January 2021 after experiencing three weeks of diarrhea and abdominal pain, followed by dry cough, night sweats, and fever. By June 2022, she was also experiencing forgetfulness and depression, and was referred to Canberra Hospital. While there, she underwent brain surgery when an MRI revealed some abnormalities.

Neurosurgeon Hari Priya Bandi was performing a biopsy when she used forceps to pull the parasite out of the woman’s brain. She immediately contacted Canberra Hospital infectious diseases physician Sanjaya Senanayake, saying “Oh my god, you wouldn’t believe what I just found in this lady’s brain—and it’s alive and wriggling,” Bandi said, according to The Guardian.

According to the case study, this is the first known human Ophidascaris infection and the first to involve the brain of a mammalian species. These worms are common to carpet pythons and they typically live in a python’s stomach and esophagus. Humans infected with Ophidascaris robertsi larvae would be considered accidental parasite hosts.

“Normally the larvae from the roundworm are found in small mammals and marsupials, which are eaten by the python, allowing the life cycle to complete itself in the snake,” Senanayake, who is also one of the co-authors of the case study, said in a statement

The researchers believe that the woman from southeastern New South Wales likely caught the roundworm after collecting Warrigal greens next to a nearby lake where a python had shed the parasite via its feces. The patient used the Warrigal greens for cooking and was probably infected with the parasite directly from touching the native grass or after consuming the greens.

A live third-stage larval form of Ophidascaris robertsi that is about 3 inches long and only one millimeter in diameter. The worm is seen under a stereomicroscope.
A live third-stage larval form of Ophidascaris robertsi that is about 3 inches long and only one millimeter in diameter. The worm is seen under a stereomicroscope. CREDIT: Hossain M/Kennedy KJ/Wilson HL.

According to the team, this world-first case highlights the danger of zoonotic transmission, or  diseases and infections that pass from animals to humans. This risk is growing as humans and animals start to live more closely together and habitats continue to overlap. 

“There have been about 30 new infections in the world in the last 30 years. Of the emerging infections globally, about 75 percent are zoonotic, meaning there has been transmission from the animal world to the human world. This includes coronaviruses,” Senanayake said. “This Ophidascaris infection does not transmit between people, so it won’t cause a pandemic like SARS, COVID-19, or Ebola. However, the snake and parasite are found in other parts of the world, so it is likely that other cases will be recognised in coming years in other countries.”

[Related: Mind-controlling ‘zombie’ parasites are real.]

The patient was sent home following the surgery with antiparasitic drugs and has not returned to hospital since, but they are monitoring her since this is such a new infection.  

Despite this case being extremely rare and spine-tingling, parasitic infection is actually extremely common. One of the most widespread types is pinworm (Enterobius vermicularis or threadworm), and some estimates say it is present in over one billion people around the world. They are specific to humans and can cause intense itching and are passed from person-to-person.

Two types of hookwormNecator americanis and Ancylostoma duadonale—are found in soil. Ancylostoma duodenale only lives in Australia typically in more remote communities. These worms typically enter the bloodstream through the feet.

According to Vincent Ho, an associate professor and clinical academic gastroenterologist at Western Sydney University, the best ways to avoid a parasitic infection include avoiding undercooked or raw pork, avoiding swimming or jumping into warm fresh bodies of water, practicing good hand washing, and wearing shoes in rural areas. 

The post ‘Alive and wriggling’ worm survived in woman’s body and brain for at least a year appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Fish oil supplements might still not be as good as the real thing https://www.popsci.com/health/fish-oil-supplements-labels-claims/ Mon, 28 Aug 2023 19:06:10 +0000 https://www.popsci.com/?p=566164
Shiny fish oil capsules laid out on a table. Fish oil contains two omega-3 fatty acids called EPA and DHA. These acids are all found in flax seeds, walnuts, and fatty fish such as salmon.
Fish oil contains two omega-3 fatty acids called EPA and DHA. These acids are all found in flax seeds, walnuts, and fatty fish such as salmon. Deposit Photos

Experts say you should be wary of the health claims on your fish oil supplement labels.

The post Fish oil supplements might still not be as good as the real thing appeared first on Popular Science.

]]>
Shiny fish oil capsules laid out on a table. Fish oil contains two omega-3 fatty acids called EPA and DHA. These acids are all found in flax seeds, walnuts, and fatty fish such as salmon.
Fish oil contains two omega-3 fatty acids called EPA and DHA. These acids are all found in flax seeds, walnuts, and fatty fish such as salmon. Deposit Photos

The dietary supplement market in the US is valued at more than $50 million dollars. One slice of that—fish oil supplements—has been growing in popularity in recent years, thanks to the many health benefits touted on their labels. However, medical research has not been able to confirm that consuming the omega-3 fatty acids in them offer many cardiovascular benefits. Despite this lack of hard evidence, fish oil marketers continue to make outsized claims about the supplement’s benefits, according to a study published on August 23 in the journal JAMA Cardiology.

[Related: Do you need a daily multivitamin? Probably not, says national health task force.]

Fish oil contains two omega-3 fatty acids, EPA and DHA, which are found in flax seeds, walnuts, and fatty fish such as salmon. Higher levels of EPA and DHA have been associated with a lower risk of cardiovascular disease; however, these observational findings are based on patients getting them naturally from their diet and not supplemental use. A 2021 study from the National Institutes of Health also showed that general over-the-counter fish oil supplements do not actually improve cardiovascular outcomes. Additionally, a randomized trial of more than 15,000 patients with diabetes found that the risk of a serious cardiovascular event was not significantly different between participants who were and weren’t taking an omega-3 supplement.

In this new paper, a team from the University of Texas Southwestern Medical Center in Dallas analyzed health claims on the labels of 2,819 fish oil supplements taken from the National Institutes of Health Dietary Supplement Label Database

More than 80 percent of the supplements in the study used a structure and function claim. These types of claims vaguely describe the role that omega-3 fatty acids play in the body, like “supports heart, mind, and mood” or “promotes heart health.” 

The study also reviewed qualified health claims and found them on only 19 percent (399) of the labels: 394 relating to coronary heart disease, three for blood pressure, and two relating to both. These claims are related to the supplement’s potential to help in the treatment or prevention of a disease and are made by the US Food and Drug Administration (FDA), but only following an evidence review.

Currently, there are only two cardiovascular-related qualified health claims for fish oil, one that relates to coronary heart disease and the other to blood pressure. In 2019, the FDA wrote, “Supportive but not conclusive research shows that consumptions of EPA and DHA omega-3 fatty acids may reduce the risk of coronary heart disease.”

However, the agency also states that structure and function claims cannot say that a supplement has the power to prevent, treat, or cure any illness or disease. They simply “describes the role of a nutrient or dietary ingredient intended to affect the structure or function in humans.’’

In response to Popular Science’s request to comment on fish oil supplement labels, an FDA spokesperson wrote: “In general, the FDA does not comment on specific studies, but evaluates them as part of the body of evidence to further our understanding about a particular issue and assist in our mission to protect public health. The FDA is reviewing the findings of the paper.”

[Related: Viagra shows promise in extending men’s lives, among other areas.]

“It is true that omega-3 fatty acids are present in the brain and are important for all sorts of brain functions,” study co-author and cardiology professor Ann Marie Navar told The Washington Post. “What has not been consistently shown with high-quality trials is that taking more of it in the form of a fish oil supplement leads to improved performance or prevention of disease.” Navar also added that she was “alarmed” to learn that fish oil supplement labels often include claims that imply health benefits for a wide range of organ systems (brain, heart, and eyes) while conducting the study.

The team did recognize several limitations in their analysis. Companies submit label information to the NIH Dietary Supplement Label Database on a volunteer basis, so the paper was not all-inclusive. What’s more, the authors only assessed supplements from the 16 largest fish oil brands and the health claims on their labels, not promotional materials.

“Nutrition studies are notoriously difficult to conduct in the right way,” certified clinical nutritionist and board-certified holistic nutritionist Megan Lyons told Healthline. “Humans have so many variables at play: different health conditions, diverse dietary intake, varying movement patterns, and distinct sleep and stress patterns—all contributing to our overall health.”

The post Fish oil supplements might still not be as good as the real thing appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
We’re finally figuring out how plants pass on genetic memories https://www.popsci.com/environment/plants-genetic-memories/ Mon, 28 Aug 2023 15:00:00 +0000 https://www.popsci.com/?p=565929
Lush and green mint leaves growing in a garden. To keep disruptive “jumping genes” quiet, some plant species use a process called methylation, which adds regulatory markers to the specific sites in the DNA and can be passed down through epigenetic memory.
To keep disruptive “jumping genes” quiet, some plant species use a process called methylation, which adds regulatory markers to the specific sites in the DNA and can be passed down through epigenetic memory. Deposit Photos

New research delves deeper into how plant proteins act like yo-yos to clear paths for important chemical markers.

The post We’re finally figuring out how plants pass on genetic memories appeared first on Popular Science.

]]>
Lush and green mint leaves growing in a garden. To keep disruptive “jumping genes” quiet, some plant species use a process called methylation, which adds regulatory markers to the specific sites in the DNA and can be passed down through epigenetic memory.
To keep disruptive “jumping genes” quiet, some plant species use a process called methylation, which adds regulatory markers to the specific sites in the DNA and can be passed down through epigenetic memory. Deposit Photos

When an animal is born or when a plant sprouts, the new organism has not only inherited its parent DNA, but also some genetic memories called epigenetic memories. These genetic recollections can come in the form of a changed gene expression due to the trauma from past environmental stress or the basic instructions on how specific chemical markers in the cell should be used in the genetic code they’ve inherited. Epigenetic inheritance is particularly common in plants and understanding how it works could help produce more robust plants to secure future food supplies in the face of global climate change. 

Scientists are getting closer to understanding the processes behind epigenetic inheritance in some plants and have discovered how a specific protein works to control this process. The findings are detailed in a study published August 28 in the journal Cell

[Related: Scientists can now tell if you had a ‘vanishing’ twin in the womb.]

In the study, a team from Cold Spring Harbor Laboratory and Howard Hughes Medical Institute looked deeper into how plants pass along markers that inactivate potentially disruptive genes called transposons. Transposons are also called “jumping genes.” When they’re switched on, they can move around and disturb the other genes within a cell. To keep transposons quiet and protect the rest of the genome, cells use a process called methylation, which adds regulatory markers to the specific DNA sites where the transposons are jumping around.

During methylation, a protein that silences genes called DDM1 clears the way for the specific enzymes that place important inherited chemical markers onto a plant’s new DNA strands. Plant cells need DDM1 to clear paths because their DNA is naturally very tightly packed together. To keep the DNA properly condensed, cells wrap their DNA around packing proteins called histones

“But that blocks access to the DNA for all sorts of important enzymes,” study co-author and plant biologist Rob Martienssen said in a statement. He added that before methylation can occur, “you have to remove or slide the histones out of the way.”

A green plant with about eight leaves grows out of soil. Arabidopsis thaliana is a plant species widely used to make fundamental biological discoveries. With the help of this versatile test subject, Cold Spring Harbor Laboratory scientists have now dug up the secrets of a process that helps control inheritance. CREDIT: Martienssen Lab/Cold Spring Harbor Laboratory.
Arabidopsis thaliana is a plant species widely used to make fundamental biological discoveries. With the help of this versatile test subject, Cold Spring Harbor Laboratory scientists have now dug up the secrets of a process that helps control inheritance. CREDIT: Martienssen Lab/Cold Spring Harbor Laboratory.

This is where DDM1 works. DDM1 slides DNA along the packing proteins to expose the sites in the plant cell that need methylation. Martienssen explained that this process is like the way a yo-yo glides along a string. The histones “can move up and down the DNA, exposing parts of the DNA at a time, but never falling off,” he said.

Martienssen and former colleague Eric Richards first discovered DDM1 30 years ago and this study is building upon that initial finding using a plant called Arabidopsis thaliana or thale cress.

In a series of genetic and biochemical experiments, Martienssen pinpointed the histones that DDM1 displaces. Next, study co-author Leemor Joshua-Tor used a process called cryo-electron microscopy to take detailed images of the enzyme interacting with DNA and the packing proteins associated with it. The team saw how DDM1 grabs onto particular histones to rearrange the packaged DNA.

[Related: Dying plants are ‘screaming’ at you.]

“An unexpected bond that ties DDM1 together turned out to correspond to the first mutation found all those years ago,” molecular biologist Joshua-Tor said in a statement

Their experiments also showed how DDM1’s preference for certain histones preserves epigenetic controls across generations of plants. A histone found only in pollen is resistant to DDM1 and acts as a placeholder during cell division. “It remembers where the histone was during plant development and retains that memory into the next generation,” Martienssen said. This knowledge will help new generations of plants keep jumpy transposons from disturbing the rest of the genome. 

Plants are potentially not the only organisms performing this process. Humans also depend on proteins similar to DDM1 to maintain DNA methylation. This new understanding of its role in epigenetics could one day explain how these proteins keep our own genomes both intact and functional, but more research is needed. 

The post We’re finally figuring out how plants pass on genetic memories appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Fossils of 10 unknown species found by sewage plant https://www.popsci.com/science/fossils-unknown-species/ Mon, 28 Aug 2023 12:00:00 +0000 https://www.popsci.com/?p=565893
A large group of white and gray fossils laid out on a blue tarp.
Some of the 266 fossil species found during a wastewater plant excavation in New Zealand. Bruce Hayward

Paleontologists sifted through thousands of 3 to 3.7 million year-old fossils in New Zealand, which also included great white shark teeth and the spine of an extinct sawshark.

The post Fossils of 10 unknown species found by sewage plant appeared first on Popular Science.

]]>
A large group of white and gray fossils laid out on a blue tarp.
Some of the 266 fossil species found during a wastewater plant excavation in New Zealand. Bruce Hayward

Fossils and ancient relics of the past turn up in some weird places, from the stretches of the New Jersey shore and random Walmarts to Swedish lakes and even the moon. They are also common finds during major excavations. More than 200 fossil species were found in a mound of sand beneath Mangere Wastewater Treatment Plant in Auckland, New Zealand.

[Related from PopSci+: The ghosts of the dinosaurs we may never discover.]

The fossils include some of the world’s oldest known flax snails, an extinct sawshark spine, great white shark teeth, and at least 10 previously known species. They are described in a study published on August 28 in the New Zealand Journal of Geology and Geophysics. According to the team, this treasure trove represents one of the richest and most diverse groups of three-million-year-old animal fossils ever found in New Zealand. 

They were first uncovered in 2020 by Watercare, Auckland’s water and wastewater service. The company was excavating two large vertical shafts as part of an upgrade to the major pipeline that brings raw sewage from the center of the city to a plant for treatment. While digging, they came upon the ancient shell bed dating back at least three million years. Geologist and study co-author Bruce Hayward from Auckland-based research group Geomarine Research said that the discovery was similar to “finding gold right on your doorstep.”

Watercare and their contractors brought the shelly sand over to a nearby field so that Hayward and a team of paleontologists led by Auckland Museum curator Wilma Blom could carefully sift through it. The team examined more than 300,000 fossils of 266 species, and several thousand specimens have been brought to this museum.

The fossils were likely deposited between 3 and 3.7 million years ago into a subtidal channel that would become present-day Manukau Harbour. “At that time, sea level was slightly higher than it is today as the world was also several degrees warmer than now,” Hayward said in a statement. “As a result, the fossils include a number of subtropical species, whose relatives today live in the warmer waters around the Kermadec and Norfolk islands.”

In the study, the team describes 266 different fossil species and some rare finds, including a baleen whale vertebrae, dental plates of eagle rays, and a broken sperm whale tooth. The roughly 10 previously unknown species described and named in future research. 

[Related: Fossil trove in Wales is a 462-million-year-old world of wee sea creatures.]

One aspect of this fossil bed that surprised the team is that the fossilized remains belong to animals that lived in many different environments that were eventually brought together in the ancient marine channel through strong currents and waves. Ten specimens of an iconic  mollusk called the New Zealand flax snail likely lived on the land next to the ancient subtidal channel and were washed out to sea by storm runoff, according to the team. Other specimens were likely attached to hard rocky shorelines, while others were washed into the channel from areas further offshore.  

The team dedicated the work to New Zealand’s leading molluscan fossil expert Alan Beu, who was working on the fossils before he died earlier this year.

The post Fossils of 10 unknown species found by sewage plant appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
You might be able to plant a tree from seeds NASA flew by the moon https://www.popsci.com/science/moon-trees-artemis-1/ Fri, 25 Aug 2023 15:15:00 +0000 https://www.popsci.com/?p=565501
A portion of the far side of the Moon looms large just beyond the Orion spacecraft in this image taken November 21, 2022, by a camera on the tip of one of Orion’s solar arrays. The darkest spot visible near the middle of the image is Mare Orientale.
A portion of the far side of the Moon looms large just beyond the Orion spacecraft in this image taken November 21, 2022, by a camera on the tip of one of Orion’s solar arrays. The darkest spot visible near the middle of the image is Mare Orientale. NASA

Roughly 2,000 seeds were flown on the Artemis I mission. The seeds will now become official Moon Trees here on Earth.

The post You might be able to plant a tree from seeds NASA flew by the moon appeared first on Popular Science.

]]>
A portion of the far side of the Moon looms large just beyond the Orion spacecraft in this image taken November 21, 2022, by a camera on the tip of one of Orion’s solar arrays. The darkest spot visible near the middle of the image is Mare Orientale.
A portion of the far side of the Moon looms large just beyond the Orion spacecraft in this image taken November 21, 2022, by a camera on the tip of one of Orion’s solar arrays. The darkest spot visible near the middle of the image is Mare Orientale. NASA

In 2022, NASA’s Artemis I mission traveled 1.4 million miles into space. When the Orion spacecraft flew by the moon, future trees were on board. The uncrewed spacecraft contained seeds for five tree species, including sweetgums, Douglas-firs, sycamores, loblolly pines, and giant sequoias. After the 25.5 day mission, the Forest Service successfully germinated the seeds. Now, community organizations and schools across the United States now apply to receive a seedling grown from one of the tree seeds that flew by the moon that will grow to become official Artemis Moon Trees. 

[Related: Artemis I’s solar panels harvested a lot more energy than expected.]

NASA and the United States Department of Agriculture Forest Service will distribute the Artemis Moon Tree seedlings in an effort to “create new ways for communities home on Earth to connect with humanity’s exploration of space for the benefit of all” and promote STEM in the classroom and beyond. 

Institutions that can apply for a seedling include universities, museums, science centers, organizations that serve K-12 schools, and government organizations. Applications are posted here and are due by Friday October 6. 

Five bags of seeds for the five tree species that flew on the Artemis I mission. CREDIT: NASA/USDA Forest Service.
Seeds for five tree species that flew on the Artemis I mission. CREDIT: NASA/USDA Forest Service.

The Artemis I Mission launched on November 16, 2022 and was the first integrated test of NASA’s latest deep space exploration technology: the Orion spacecraft itself, the all-powerful Space Launch System rocket, and the ground systems at Kennedy Space Center. Orion returned to Earth after 25.5 days in space, where it journeyed 270,000 miles away from Earth, orbited the moon, and collected crucial data along the way. A plush Snoopy zero-gravity indicator, LEGO minifigures, and three ‘moonikins,’ were also aboard the spacecraft with the Artemis seeds.

“NASA’s Artemis moon trees are bringing the science and ingenuity of space exploration back down to Earth,” NASA Administrator Bill Nelson said in a statement. “Last year, these seeds flew on the Artemis I mission 40,000 miles beyond the Moon. With the help of the USDA, this new generation of Moon trees will plant the spirit of exploration across our communities and inspire the next generation of explorers.”

[Related: Before the Artemis II crew can go to the moon, they need to master flying high above Earth.]

The Artemis seeds are also the second generation of Moon Trees. In 1971, Apollo 14 Command Module Pilot Stuart Roosa, carried hundreds of tree seeds about the mission as a part of his personal kit. Roosa was a former Forest Service smokejumper, a group of specially trained wildland firefighters who are often the first to respond to remote firefighters. When Apollo 14 returned, the Forest Service germinated the seeds and the first generation of Apollo Moon Tree seedlings were then planted around the United States.

NASA and the Forest Service hope that this next 21st Century generation of Moon Trees carry on the legacy of inspiration launched over 50 years ago. 

“The seeds that flew on the Artemis mission will soon be Moon Trees standing proudly on campuses and institutions across the country,” Forest Service chief Randy Moore said in a statement. “These future Moon Trees, like those that came before them, serve as a potent symbol that when we put our mind to a task, there is nothing we can’t accomplish. They will inspire future generations of scientists, whose research underpins all that we do here at the Forest Service.”

The post You might be able to plant a tree from seeds NASA flew by the moon appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
‘Forever chemicals’ detected in paper and plastic straws https://www.popsci.com/environment/forever-chemicals-paper-straws/ Fri, 25 Aug 2023 12:00:00 +0000 https://www.popsci.com/?p=565349
A woman holds a red smoothie in a glass with a handle on it and a stainless steel straw sticking out. A group of ‘forever chemicals’ commonly called PFAS were not detected on the stainless steel straws in this study, but were on 18 out of 20 brands of paper straws.
A group of ‘forever chemicals’ commonly called PFAS were not detected on the stainless steel straws in this study, but were on 18 out of 20 brands of paper straws. Deposit Photos

A small study suggests that stainless steel straws may be safest option to avoid PFAS.

The post ‘Forever chemicals’ detected in paper and plastic straws appeared first on Popular Science.

]]>
A woman holds a red smoothie in a glass with a handle on it and a stainless steel straw sticking out. A group of ‘forever chemicals’ commonly called PFAS were not detected on the stainless steel straws in this study, but were on 18 out of 20 brands of paper straws.
A group of ‘forever chemicals’ commonly called PFAS were not detected on the stainless steel straws in this study, but were on 18 out of 20 brands of paper straws. Deposit Photos

In 2015, a viral image of a sea turtle with a plastic straw up its nose made the single-use plastic item environmental public enemy number one, ushering in the era of the polarizing paper straw. Now, some new research found that paper straws might have some downsides, and not just because they tend to crumble under pressure

[Related: Did plastic straw bans work? Yes, but not in the way you’d think.]

A small European study that tested 39 brands of straws published August 25 in the journal Food Additives and Contaminants found that some brands of paper straws contain a harmful group of synthetic chemicals known as poly- and perfluoroalkyl substances (PFAS). These ‘forever chemicals’ were found in the majority of the straws tested in the study and were most commonly detected in straws made from paper and bamboo. The plastic straws used in this paper also contained a high number of PFAS and the authors recommended using reusable steel straws instead.

PFAS are found in a wide range of products from non-stick pans to clothing and help make materials resistant to water and stains. They may be harmful to people, wildlife, and the environment, since they break down very slowly and can potentially persist over thousands of years. Multiple studies link the chemicals to various cancers and many vital water sources are contaminated with them. It is estimated that PFAS are in more than 97 percent of Americans’ bodies. Researchers have even found them in breast milk.

A separate 2021 study found PFAS in plant-based drinking straws in the United StatesThe study co-author and University of Antwerp environmental scientist Thimo Groffen and his team wanted to see if the same was true in Belgium. 

“Straws made from plant-based materials, such as paper and bamboo, are often advertised as being more sustainable and eco-friendly than those made from plastic,” Groffen said in a statement. “However, the presence of PFAS in these straws means that’s not necessarily true.” 

In the study, the team tested 39 brands of drinking straws made from five materials– paper, bamboo, glass, stainless steel, and plastic. A growing number of countries have banned single-use plastic products and plant-based versions are popular alternatives. 

The straws were primarily obtained from shops, supermarkets, and fast-food restaurants and underwent two rounds of testing for PFAS. About 69 percent of brands tested in the study (27 brands out of the 39) contained PFAS, with 18 different PFAS detected in total. 

Paper straws were the most likely to contain PFAS, with chemicals detected in 90 percent (18 out of 20 brands) of paper straws tested. They were also detected in 80 percent (four out of five brands) of bamboo straws brands, 75 percent (three out of four brands) of plastic straw brands, and 40 percent (two out of five brands) of glass straws. The team did not detect any PFAS in the five brands of steel straws tested. 

Perfluorooctanoic acid was the most commonly found forever chemical in the study, however, this PFAS has been banned globally since 2020. They also detected trifluoroacetic acid and trifluoromethanesulfonic acid. These “ultra-short chain” PFAS are highly water soluble which means they could potentially leach out of straws and into drinks. 

According to the team, the concentrations of PFAS were low, and since people tend to only use straws occasionally, they pose a limited risk to health. However, PFAS can remain in the body for several years and their concentrations can build up.

[Related: 3M announces it will cease making ‘forever chemical’ PFAS by 2026.]

“Small amounts of PFAS, while not harmful in themselves, can add to the chemical load already present in the body,” said Groffen. 

It is not known if the PFAS were added to the straws for waterproofing when they were being manufactured or if it was a result of contamination from a different source. Some sources of contamination could be the soil that the plant-based materials were grown in and the water used during the manufacturing process. 

However, since PFAS were present in almost every brand of paper straw that the team tested it is likely that it was used as a water-repellent coating in some cases, according to the authors. The team says that some of the study’s other limitations include not looking at if the PFAS would leach out of the straws and into liquids. 

“The presence of PFAS in paper and bamboo straws shows they are not necessarily biodegradable,” Groffen said. “We did not detect any PFAS in stainless steel straws, so I would advise consumers to use this type of straw–or just avoid using straws at all.” 

The post ‘Forever chemicals’ detected in paper and plastic straws appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What the heck is up with Neptune’s dark spots? https://www.popsci.com/science/neptune-dark-spots/ Thu, 24 Aug 2023 19:00:00 +0000 https://www.popsci.com/?p=565276
A sequence of Hubble Space Telescope images from 1994 to 2020 that chronicles the waxing and waning of the amount of cloud cover on Neptune. This long set of observations shows that the number of clouds grows increasingly following a peak in the solar cycle.
This sequence of Hubble Space Telescope images chronicles the waxing and waning of the amount of cloud cover on Neptune. This long set of observations shows that the number of clouds grows increasingly following a peak in the solar cycle. NASA, ESA, Erandi Chavez (UC Berkeley), Imke de Pater (UC Berkeley)

The ice giant’s atmosphere has been acting a little strange lately and astronomers are figuring out why.

The post What the heck is up with Neptune’s dark spots? appeared first on Popular Science.

]]>
A sequence of Hubble Space Telescope images from 1994 to 2020 that chronicles the waxing and waning of the amount of cloud cover on Neptune. This long set of observations shows that the number of clouds grows increasingly following a peak in the solar cycle.
This sequence of Hubble Space Telescope images chronicles the waxing and waning of the amount of cloud cover on Neptune. This long set of observations shows that the number of clouds grows increasingly following a peak in the solar cycle. NASA, ESA, Erandi Chavez (UC Berkeley), Imke de Pater (UC Berkeley)

With its vanishing clouds and now a large dark spot, the planet Neptune appears to be going through some things. Here’s a bit about why the eighth planet in our solar system is causing all this drama. 

[Related: Neptune’s faint rings glimmer in new James Webb Space Telescope image.]

Is Neptune the new Jupiter? 

Astronomers using the European Southern Observatory’s Very Large Telescope (VLT) have observed a large dark spot and a smaller bright spot next to it in Neptune’s atmosphere. This is the first time that the planet’s dark spots have ever been observed using an Earth-based telescope The findings were published on August 24 in the journal Nature Astronomy. These new spots are only occasional features in the blue background of Neptune’s atmosphere and the new results are providing clues to their mysterious nature and origin. Spots are common in the atmospheres of giant planets, with Jupiter’s Great Red Spot being the most famous. In 1989, a dark spot was first discovered on Neptune by NASA’s Voyager 2 before the spots disappeared just a few years later. 

The international team of researchers used the VLT to rule out the possibility that the dark spots are caused by a ‘clearing’ in the planet’s clouds. The team’s new observations indicate that the dark spots are likely due to air particles darkening in the layer below the main visible haze layer, as these hazes and ices mix in Neptune’s atmosphere.

The team used the VLT’s Multi Unit Spectroscopic Explorer (MUSE) to split the reflected sunlight from Neptune and its spot into component colors, or wavelengths, so that they could  study the spot in more detail than was possible before. 

The observations also offered up a surprise result. 

“In the process we discovered a rare deep bright cloud type that had never been identified before, even from space,” study co-author and University of California, Berkeley planetary scientist Michael Wong, said in a statement

These unusual luminous clouds appeared as a bright spot along the larger main dark spot, showing that the new “deep bright cloud” was actually at the same level in the atmosphere as the main dark spot. The team says this is a completely new type of feature compared to the smaller ‘companion’ clouds of high-altitude methane ice that astronomers have previously observed. 

The case of the disappearing clouds

About four years ago, Neptune’s ghostly, cirrus-like clouds largely disappeared, and only a patch of clouds hovering over the ice giant’s south pole exists today. Using almost 30 years worth of observations captured by three different space telescopes, scientists have finally determined that the diminished cloud cover could be in sync with the solar cycle. The findings were recently published in the journal Icarus.

[Related: Neptune’s bumpy childhood could reveal our solar system’s missing planets.]

“These remarkable data give us the strongest evidence yet that Neptune’s cloud cover correlates with the Sun’s cycle,” study co-author and University of California, Berkeley astronomer Imke de Pater said in a statement. “Our findings support the theory that the sun’s (ultraviolet) rays, when strong enough, may be triggering a photochemical reaction that produces Neptune’s clouds.”

The level of activity in the sun’s dynamic magnetic field will increase and decrease during the solar cycle. According to NASA, every 11 years, the magnetic field flips, as it becomes more tangled like a bundle of string. During periods of more heightened activity on the sun, more intense ultraviolet radiation bombards our solar system.

The team used data from the Lick Observatory in California, the W.M. Keck Observatory in Hawaii, and NASA’s 30-year-old Hubble Space Telescope and observed 2.5 cycles of cloud activity over the 29-year period of Neptune observations. The planet’s reflectivity increased in 2002 and dimmed in 2007. Then, the ice giant brightened again in 2015 before it darkened to its lowest level ever seen in 2020. That’s when most of the cloud cover faded away.

“It’s fascinating to be able to use telescopes on Earth to study the climate of a world more than 2.5 billion miles away from us,” study co-author and Keck Observatory staff astronomer Carlos Alvarez said in a statement. “Advances in technology and observations have enabled us to constrain Neptune’s atmospheric models, which are key to understanding the correlation between the ice giant’s climate and the solar cycle.”

The post What the heck is up with Neptune’s dark spots? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Emperor penguins suffer ‘unprecedented’ breeding failure as sea ice disappears https://www.popsci.com/environment/emperor-penguins-melting-ice-antarctica/ Thu, 24 Aug 2023 15:00:00 +0000 https://www.popsci.com/?p=565182
Two Emperor penguin chicks standing on sea ice in Antarctica.
Climate change is the biggest threat to Emperor penguin populations. Peter Fretwell/British Antarctic Survey

90 percent of Emperor penguin colonies could go quasi-extinct by 2100.

The post Emperor penguins suffer ‘unprecedented’ breeding failure as sea ice disappears appeared first on Popular Science.

]]>
Two Emperor penguin chicks standing on sea ice in Antarctica.
Climate change is the biggest threat to Emperor penguin populations. Peter Fretwell/British Antarctic Survey

The Earth’s South Pole is at a climate change crossroads, with Antarctica’s quickly melting ice and expected consistent ocean heat waves. Now, one of its signature species is in trouble. A study published August 24 in the journal Communications Earth & Environment found that some Emperor penguin colonies saw an unprecedented breeding failure in a region of the continent that experienced a total loss of sea ice in 2022.

[Related: The East Antarctic Ice Sheet could raise sea levels 16 feet by 2500.]

Four out of five Emperor penguin colonies in the Bellingshausen Sea on the western side Antarctica did not see any chicks survive to successfully fledge in the spring of 2022. Emperor penguin chicks typically fledge at four months old, when they’ve developed their first set of waterproof feathers. 

All of the colonies in this study have been discovered in the last 14 years using satellite imagery, and there has only been one previous instance of breeding failure among these penguin populations. 

“We have seen the occasional colony have bad sea ice and early break up, but this most unusual thing in this study is that a whole region has had extremely poor sea ice,” Peter Fretwell, a remote sensing expert and environmental scientist with the British Antarctic Survey and co-author of the study, tells PopSci

Similarly, the Halley Bay penguin colony, which was not included in this study and lives in a different part of Antarctica, failed to raise any chicks between 2016 and 2019. That failure was also attributed to sea ice loss. 

From April to January, Emperor penguins depend on stable sea ice that is firmly attached to the shore or ‘land-fast’ ice. Once they arrive at their chosen breeding site, penguins will lay eggs during the Antarctic winter (May to June) in the ice. Eggs will hatch after 65 days, but the chicks do not fledge until December to January during Antarctic summer. 

“This year the ice in the Bellingshausen Sea did not form until late June–when the birds should already be on their eggs. It may be that in future this region could be one of the first to become unsuitable breeding habitat,” says Fretwell.

Between 2018 and 2022, 30 percent of the 62 known Emperor penguin colonies living in Antarctica were affected by partial or total sea ice loss. The British Antarctic Survey said that it is difficult to immediately link specific extreme seasons to climate change, but a longer-term drop in sea ice extent is expected based on current climate models.  

[Related: The march of the penguins has a new star: an autonomous robot.]

By early December 2022, the Antarctic sea ice matched the previous all-time low set in 2021. The central and eastern Bellingshausen Sea region saw the worst of it, with 100 percent sea ice loss.

“Right now, in August 2023, the sea ice extent in Antarctica is still far below all previous records for this time of year,” Caroline Holmes, a British Antarctic Survey polar climate scientist who was not involved in the study, said in a statement. “In this period where oceans are freezing up, we’re seeing areas that are still, remarkably, largely ice-free.”

Previously, Emperor penguins have responded to this sea ice loss by moving to a more stable site the next year. However, this strategy won’t work if the loss of sea ice habitat extends to an entire region. 

These populations have also not been subject to large scale hunting or overfishing and other direct interactions with humans, and climate change is considered to be the only major influence on their long-term population changes. More recent efforts to predict Emperor penguin population changes paint a bleak picture, showing that if the present rate of warming persists, more than 90 percent of colonies will be quasi-extinct by the end of this century.

The known Emperor penguin colonies of western Antarctica’s Bellingshausen Sea will typically move breeding locations if there is not enough sea ice. CREDIT: Peter Fretwell/British Antarctic Survey

Daniel P. Zitterbart, a physicist by training and an Emperor penguin remote sensing expert from Woods Hole Oceanographic Institution who was not involved in the study called it a very important and timely investigation. 

“The sad part is we had all been expecting this, but we expected this later. It happened for so many colonies in just one year, just because of changing weather patterns,” Zitterbart tells PopSci. “Peter points out that this is likely due to La Niña and change in wind patterns, but the study can show us how increased extremes can have an immediate impact on those colonies that are further up north.”

As their habitat is expected to shrink over the next century, scientists are unsure if the areas that they are moving to will have enough resources to host all of the penguins coming in. Studies like this one continue to ring the alarm that Antarctica and its wildlife remain vulnerable to extremes.

“Hopefully, this is a one year thing for now and with the weather pattern changing back to El Niño, the sea ice in this location this year and next year will grow back to what it normally is,” says Zitterbart. “But we all know that this year we had the first 6.4 Sigma event, which means that the sea ice in Antarctica is very low.”

The post Emperor penguins suffer ‘unprecedented’ breeding failure as sea ice disappears appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
T. rex cousins with shorter arms were thriving right up until the asteroid hit https://www.popsci.com/science/t-rex-shorter-arms/ Thu, 24 Aug 2023 14:00:00 +0000 https://www.popsci.com/?p=565243
An illustration showing three abelisaurs on a beach, with a dead dinosaur and another smaller dinosaur. Fossils have been found of several types of abelisaur showing the diversity of dinosaurs in Morocco at the end of the Cretaceous period.
An artists's illustration of what these new abelisaurs could have looked like. Fossils have been found of several types of abelisaur showing the diversity of dinosaurs in Morocco at the end of the Cretaceous period. Andrey Atuchin

The new abelisaurs discovered in a Morocco marine bed lived until the end of the Cretaceous era.

The post T. rex cousins with shorter arms were thriving right up until the asteroid hit appeared first on Popular Science.

]]>
An illustration showing three abelisaurs on a beach, with a dead dinosaur and another smaller dinosaur. Fossils have been found of several types of abelisaur showing the diversity of dinosaurs in Morocco at the end of the Cretaceous period.
An artists's illustration of what these new abelisaurs could have looked like. Fossils have been found of several types of abelisaur showing the diversity of dinosaurs in Morocco at the end of the Cretaceous period. Andrey Atuchin

Paleontologists have found fossils of two new species of some of Tyrannosaurus rex’s cousins in Morocco. Like the famed T. rex, these early relatives had short bulldog-esque snouts and even shorter arms. These new species appear to have primarily lived in southern latitudes unlike the T-rex, but ate mostly meat like its cousins. 

The findings were described in a study published August 23 in the journal Cretaceous Research. Both new species belong to the family Abelisauridae. The carnivorous abelisaurs were counterparts to the tyrannosaurs about 66 million years ago, towards the end of the Cretaceous period.

[Related: The T. rex ‘dynasty’ reigned for more than 125,000 generations.]

The fossilized remains were found in Sidi Daoui and Sidi Chennane, just outside of the city of Casablanca in Morocco. One of the yet-to-be-named species was found via a foot bone that indicates the predator was about eight feet long. The other new species left behind a shin bone that indicates the dinosaur was about 15 feet long. 

They lived alongside a much larger abelisaur called Chenanisaurus barbaricus. The discovery of these slightly less evolved abelisaurs show that Morocco was home to many different kinds of dinosaur species just before an asteroid struck the Earth near Mexico. The asteroid strike famously triggered the mass extinction that wiped out the dinosaurs and about 90 percent of the Earth’s species 66 million years ago.  

“What’s surprising here is that these are marine beds,” University of Bath paleontologist and evolutionary biologist Nick Longrich said in a statement. “It’s a shallow, tropical sea full of plesiosaurs, mosasaurs, and sharks. It’s not exactly a place you’d expect to find a lot of dinosaurs. But we’re finding them.”

According to Longrich, while dinosaurs account for only a small proportion of fossils found in the region, the area has still produced the best idea of what dinosaurs in Africa were living at the before they went extinct. Instead of finding the same few species in the area, paleontologists can often recover fossils from new species, a sign that the fossil beds were once home to a wide range of different dinosaurs. 

Six fossilized abelisaur metatarsals in a row. Metatarsals are generally found in the feed and hind limbs of animals.
Fossilized abelisaur metatarsals. Metatarsals are generally found in the feed and hind limbs of animals. CREDIT: Nick Longrich/University of Bath.

A small number of the dinosaur fossils that have been recovered here represent five different species–the giant abelisaur Chenanisaurus, a long-necked titanosaur, a small duckbill dinosaur named Ajnabia, and these two new abelisaurs.

“We have other fossils as well, but they’re currently under study. So we can’t say much about them at the moment, except that this was an amazingly diverse dinosaur fauna,” said Longrick

For over 200 years, scientists have debated the pattern of the end-Cretaceous extinction event. While the giant asteroid impact has been linked to their demise, there is evidence that some dinosaurs were already declining when the space rock crashed into Earth. 

[Related: The Sahara Desert was once flooded with history’s most vicious dinosaurs.]

The T. rex’s that lived in present-day Montana and Wyoming may have been one of the dinosaurs already in decline. According to Longrich, that only shows a small picture of one part of the world, so it is difficult to generalize how dinosaurs living on the other side of the planet were doing. Towards the end of the dinosaurs reign, temperatures around the world dropped and dinosaurs living at higher latitudes may have become less divergent as a result.  

At least in Morocco, dinosaur species seem to have remained successful and diverse up until the very end. 

“When T. rex reigned as a megapredator in North America, abelisaurs sat at the top of the food chains in North Africa,” Nour-Eddine Jalil, a co-author of the study professor at the Natural History Museum and a researcher at Universite Cadi Ayyad in Morocco, said in a statement. “The dinosaur remains, despite their rarity, give the same messages as the more abundant marine reptile remains. They tell us that, just before the Cretaceous-Paleogene crisis, biodiversity was not declining but on the contrary, was diverse.”

The post T. rex cousins with shorter arms were thriving right up until the asteroid hit appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Newly dated cave art tells a dark story in Borneo’s history https://www.popsci.com/science/borneo-malaysia-cave-art/ Wed, 23 Aug 2023 20:00:00 +0000 https://www.popsci.com/?p=564777
This Gua Sireh Cave art was drawn with charcoal on limestone save walls and is dated between 1670 to 1830 CE. Two geometric figures, with one prominently wielding a weapon are featured.
This Gua Sireh Cave art was drawn with charcoal on limestone save walls and is dated between 1670 to 1830 CE. Andrea Jalandoni

The drawings in Gua Sireh go back thousands of years, but these depictions show a more recent tale.

The post Newly dated cave art tells a dark story in Borneo’s history appeared first on Popular Science.

]]>
This Gua Sireh Cave art was drawn with charcoal on limestone save walls and is dated between 1670 to 1830 CE. Two geometric figures, with one prominently wielding a weapon are featured.
This Gua Sireh Cave art was drawn with charcoal on limestone save walls and is dated between 1670 to 1830 CE. Andrea Jalandoni

The Gua Sireh Cave on the island of Borneo in the Malaysian state of Sarawak is known for hundreds of charcoal drawings lining the walls of its main chambers. Now, a team of researchers from Australia’s Griffith University, the Sarawak Museum Department, and the Bidayuh people have officially dated some of the drawings in the cave which tell a sad and true story.  The findings are detailed in a study published August 23 in the journal PLOS One.

[Related: Neanderthals were likely creating art 57,000 years ago.]

The team dates the drawings to between 1670 to 1830 CE, which corresponds with a time of increasing conflict in the region. By the early 19th century, Sarawak was a loosely governed territory under the Brunei Sultanate. The Bruneian Empire only had authority along the coastal regions of Sarawak. These regions were held by semi-independent Malay leaders. The ruling Malay people controlling the area exacted heavy tolls on the area’s indigenous hill tribes, including the Bidayuh

“The Bidayuh recall Gua Sireh’s use as a refuge during territorial violence in the early 1800s when a very harsh Malay Chief had demanded they hand over their children,” Mohammad Sherman Sauffi William, a Bidayuh descendent, Sarawak Museum curator, and co-author of the study said in a statement. “They refused and retreated to Gua Sireh, where they initially held off a force of 300 armed men trying to enter the cave from the valley about 60 meters [196 feet] below.

After two Bidayuh were shot and seven were taken as prisoners and/or enslaved, most of the tribe escaped through a passageway at the back of the largest entrance chamber to the cave, which leads through the Gunung Nambi limestone hill, according to Sauffi William. 

“The figures were drawn holding distinctive weapons such as a Pandat which was used exclusively for fighting or protection, as well two short-bladed Parang Ilang, the main weapons used during warfare that marked the first decades of white rule in Borneo,” Sauffi Wiliam said.

The art in Gua Sireh is just one part of a wider distribution of drawings found from the Philippines through Southeast Asia, across Borneo and Sulawesi to Peninsular Malaysia. They are believed to be associated with the diaspora of Austronesian speaking peoples. Previous dating work established that similar drawings in the Philippines were made as early as 3500 and 1500 BCE in southern Sulawesi.

[Related: Cave drawings from 20,000 years ago may feature an early form of writing.]

To the best of their knowledge, the latest radiocarbon dates are the first chronometric age determinations for Malaysian rock art. Their first step in this process was establishing what substance was used to create the cave drawings. 

“Black drawings in the region have been made for thousands of years,” study co-author and Griffith University archaeological scientist Jillian Huntley said in a statement.  “We wanted to confirm the images were drawn with charcoal, as there are a limited number of substances you can actually radiocarbon date.”

To do this, the team looked at the decay of carbon isotopes, which meant that the material had to be organic or contain carbon. The analysis determined that charcoal made from different species of bamboo had been used to make them and they are well preserved partially due to the cave’s limestone walls. 

A digital fly-through of the Gua Sireh Cave in Sarawak. CREDIT: Andrea Jalandoni

The dating has also been informed by Bidayuh oral histories and was used to record the experience of territorial violence and colonization in the region. The team knew from earlier studies that the rock art in northwestern Borneo is dominated by drawings of animals, people, ships, and abstract geometric/linear design.

“At Gua Sireh, people are drawn wearing headdresses—some armed with shields, knives and spears, in scenes showing activities such as hunting, butchering, fishing, fighting and dancing,” study co-author and Griffith University anthropologist and archaeologist Paul Taçon said in a statement. “We had clues about their age based on subjects such as introduced animals, but we really didn’t know how old they were, so it was difficult to interpret what they might mean.”

Future studies could apply similar techniques to other drawings and reveal more insight into the Austronesian and Maylay diasporas and the region’s complex human history. 

The post Newly dated cave art tells a dark story in Borneo’s history appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Pompeii’s archaeological puzzles can be solved with a little help from chemistry https://www.popsci.com/science/pompeii-chemical-analysis/ Wed, 23 Aug 2023 18:00:00 +0000 https://www.popsci.com/?p=564641
Plaster casts of the remains of Pompeii's victims. In the Nineteenth Century, archaeologist Giuseppe Fiorelli developed a technique using plaster to study the remains of the victims of Mount Vesuvius’ furious eruption.
Deposit Photos

Even after a century wrapped in plaster, remains show that certain victims very likely died of asphyxiation.

The post Pompeii’s archaeological puzzles can be solved with a little help from chemistry appeared first on Popular Science.

]]>
Plaster casts of the remains of Pompeii's victims. In the Nineteenth Century, archaeologist Giuseppe Fiorelli developed a technique using plaster to study the remains of the victims of Mount Vesuvius’ furious eruption.
Deposit Photos

The ruins of the ancient Roman city of Pompeii are full of morbid mystery. In 79 CE, a volcanic eruption wiped out the city of between 10,000 and 20,000 inhabitants. Massive plumes of volcanic ash and pumice shot out of Mount Vesuvius, covering and suffocating Pompeii’s doomed residents. Archaeologists have found the remains of over 1,300 victims in the site southeast of the city of Naples over the last 250 years.

[Related: ‘Violent’ earthquakes accompanied the infamous volcanic eruption that buried Pompeii.]

Some of the bodies of Pompeii were also preserved in plaster, but not from Mount Vesuvius and not in 79 CE. In the 1860s and 1870s, archaeologists led by Giuseppe Fiorelli poured plaster into the voids left behind by the bodies that had decomposed. These casts typically have the skeletal remains embedded in the plaster that retain the body shape and give a realistic image of victims of the eruption. 

“Pompeii is one of the most important places from an archaeological point of view,” Gianni Gallello, an archeological scientist at the University of Valencia in Spain tells PopSci.  “All of Roman society is imprinted at the moment after the eruption, all stuck in time.”

However, the plaster may have contaminated the chemical composition of the bones, according to a study published August 23 in the journal PLOS One. While the plaster may have altered the chemical makeup of the bones, bioarchaeological analysis still supports the theory that these specific victims died from asphyxiation and not from blunt force trauma from rocks or burning.

Gallello is one of the co-authors of the study who specializes in applying analytical chemistry to archeological finds. He brought a technique called portable X-ray fluorescence as a way to noninvasively examine the elemental composition of the bones and plaster for the first time. 

“It’s a portable device that takes the material profile invisibly,” Gallello explains. “Everything was in contact with the plaster, so you can get contamination. Plaster also has high levels of compounds similar to the bones.”

In this study, Gallello and his colleagues looked at six plaster casts from the Porta Nola (gate) area of Pompeii and one cast from the city’s Terme Surbane (or frescoed bath house) for anthropological and multielemental analysis. They also compared these bones to cremated bones from a Roman necropolis and ones found in a Spanish Islamic necropolis.

[Related: Mount Vesuvius murdered its victims in more brutal ways than we thought.]

“Cross referencing is important for volcanologists and anthropologists. It provides complimentary data [for the] reconstruction of the evidence. Anthropological work can say that the position of the bones of the people who died while they were escaping is telling that they probably died from asphyxiation, while archaeological data can say if it was during the second part of the eruption,” says Gallello.

Archaeology photo
Gianni Gallello (in the front) measuring Cast #57 by pXRF, together with Llorenç Alapon (in the back) at Pompeii Archaeological Park. CREDIT: Alapont et al.

Using portable X-ray fluorescence, they found that the plaster from Pompeii was completely different from the burned and unburned bones from the collection. Testing out this method for the first time on the Pompeii casts also helped add to the prevailing theories of what killed these specific residents of Pompeii during the eruption. While the plaster contamination makes it more difficult to study, the chemical analysis supports the theory that the victims suffocated from the volcanic ash. 

“We don’t pretend to say how they died. What we do is provide more evidence and data to complement and allow the volcanologists who are very active in Pompeii to study,” says Gallello. 

The team hopes that using noninvasive techniques like this on other archeological finds and cast skeletons will help find better evidence to draw stronger conclusions on the causes of death. 

“It’s an honor to work in Pompeii,” says Gallello. “We do work that we love, and for us, it’s not work.”

The post Pompeii’s archaeological puzzles can be solved with a little help from chemistry appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Hogfish ‘see’ using their skin https://www.popsci.com/environment/hogfish-skin-vision/ Wed, 23 Aug 2023 14:00:00 +0000 https://www.popsci.com/?p=564665
A hogfish swims near the Florida Keys. It has spikes on top and a pointy snout.
Hogfish are found in the western Atlantic Ocean and carry a gene for a light-sensitive protein called opsin. Deposit Photos

These chameleons of the sea can change color in milliseconds.

The post Hogfish ‘see’ using their skin appeared first on Popular Science.

]]>
A hogfish swims near the Florida Keys. It has spikes on top and a pointy snout.
Hogfish are found in the western Atlantic Ocean and carry a gene for a light-sensitive protein called opsin. Deposit Photos

The pointy-snouted and reef dwelling hogfish that dot the Atlantic Ocean between North Carolina and Brazil are known for their color-changing skin. These chameleons of the sea can quickly switch from white to a reddish brown to blend in with reefs, but their skin may be hiding something else.

[Related: Octopus change color as they shift between sleep phases.]

A study published August 21 in the journal Nature Communications looked deeper into the hogfish’s sensory feedback system and found that the fish could be using their skin to help see underwater. They can also use this to take mental photographs of themselves from the inside.

University of North Carolina Wilmington biologist Lori Schweikert was inspired to study this phenomenon after she witnessed it first hand in the Florida Keys. When she saw that a hogfish could continue this camouflage act even after it had died, she wondered if hogfish could detect light using only their skin, versus relying on their eyes and brain. 

In an earlier study, Schweikert and Duke University biologist Sönke Johnsen found that hogfish carry a gene for a light-sensitive protein called opsin that is activated in their skin. This gene is different from the opsin genes that are found in their eyes. Squid, geckos, and other color-changing animals also make light-sensing opsins in their skin, but scientists are unsure how they help the animals change color. One hypothesis is that light-sensing skin helps animals take in their surroundings, but it also could be a way that the animals view themselves. 

In this new study, Schweikert and Johnsen took pieces of skin from different parts of the hogfish’s body and took images of them under a microscope. Up close, each dot of color on the skin is a specialized cell called a chromatophore. These cells have granules of pigment inside them that can be black, yellow, or red.

The movement of these pigment granules changes the skin color. When they are spread out across the cell, darker colors appear. The cell becomes more transparent when they cluster together into a tiny spot. 

Fish photo
Seen through a microscope, a hogfish’s skin looks like a pointillist painting. Each dot of color is a specialized cell containing pigment granules that can be red, yellow or black. The pigment granules can spread out or cluster tightly together within the cell, making the color appear darker or more transparent. CREDIT: Lori Schweikert, University of North Carolina Wilmington

Next, the team used a technique called immunolabeling to find the light sensing opsin proteins within the skin. They saw that in hogfish, the opsins aren’t produced in the color-changing chromatophore cells. The opsins actually reside in other cells that are located directly beneath them.

Images taken with a transmission electron microscope showed a previously unknown cell type below the chromatophores that are full of opsin protein.

[Related: Some sea snakes may not be colorblind after all.]

According to Schweikert, the light striking the skin must pass through the pigment-filled chromatophores first before it gets to the light-sensitive layer. She and the team estimate that the opsin molecules in the hogfish are most sensitive to blue light. This is the wavelength of light that the pigment granules in the hogfish absorb best. 

The fish’s light-sensitive opsins are somewhat like an internal roll of Polaroid film, that captures changes in the light and then can filter through the pigment-filled cells when the pigment granules fan out or scrunch up. 

“The animals can literally take a photo of their own skin from the inside,” Johnsen said in a statement. “In a way they can tell the animal what its skin looks like, since it can’t really bend over to look.”

Eyes do more than merely detect light and work to form images, so it’s not enough to say that hogfish skin is like a giant eye. 

“Just to be clear, we’re not arguing that hogfish skin functions like an eye,” Schweikert added in a statement. “We don’t have any evidence to suggest that’s what’s happening in their skin. They appear to be watching their own color change.”

The findings may help researchers develop better sensory feedback techniques for devices that need to fine-tune performance without eyesight or camera feeds, such as robotic limbs and self-driving cars.

The post Hogfish ‘see’ using their skin appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mighty sabertooth tigers may have purred like kittens https://www.popsci.com/science/sabertooth-tiger-purr-roar/ Tue, 22 Aug 2023 17:00:00 +0000 https://www.popsci.com/?p=564322
An illustration of a sabertooth tiger in a grassland. Sabertooth tigers went extinct between about 8,000 and 10,000 years ago.
An illustration of a sabertooth tiger. The predators went extinct between about 8,000 and 10,000 years ago. Adam Hartstone-Rose

Evidence in the feline's bones suggest that this extinct predator may have made some nuanced vocalizations.

The post Mighty sabertooth tigers may have purred like kittens appeared first on Popular Science.

]]>
An illustration of a sabertooth tiger in a grassland. Sabertooth tigers went extinct between about 8,000 and 10,000 years ago.
An illustration of a sabertooth tiger. The predators went extinct between about 8,000 and 10,000 years ago. Adam Hartstone-Rose

If the mighty Ice Age sabertooth tiger called out in a forest, and no one was around to hear it, did it even make a sound? A team of researchers from North Carolina State University set out to answer that philosophical question by investigating if sabertooth cats had a throaty purr or a mighty roar. They found that tiny bones in the tiger’s throat might present a more  nuanced answer. Their findings were published August 21 in the Journal of Morphology

[Related: Life in Los Angeles was brutal for saber-toothed cats.]

Present-day cats belong to two subfamilies who make different vocalizations. The pantherine or “big cats” include lions, jaguars, and tigers who typically roar. Felinae or “little cats” includes domestic cats, ocelots, lynxes, and cougars who purr. For cats that roar, the structures that surround their larynx (or voice box) generally aren’t stiff enough to make the purring sound.

“Evolutionarily speaking, sabertooths split off the cat family tree before these other modern groups did,” study co-author and NC state biologist Adam Hartstone-Rose said in a statement. “This means that lions are more closely related to housecats than either are to sabertooths.

Vocalization is driven by the larynx and soft tissue in the throat, not bones. However anatomists noticed that the bones responsible for anchoring those tissues in place called the hyoid bones differed in both number and size between purring and roaring cats. 

“While humans have only one hyoid bone, purring cats have nine bones linked together in a chain and roaring cats have seven,” co-author and NC State Ph.D. student Ashley Deutsch said in a statement. “The missing bones are located toward the top of the hyoid structure near where it connects to the skull.”

According to the team, sabertooth tigers only have seven bones in their hyoid structure, but the shape and size look eerily similar to some purring cats’ bones. If vocalization is related to the number of bones in the hyoid structure, then the sabertooths roared. However, if it is about shape, they may have purred. 

“You can argue that since the sabertooths only have seven bones they roared, but that’s not the whole story,” said Hartstone-Rose. “The anatomy is weird. They’re missing extra bones that purring cats have, but the shape and size of the hyoid bones are distinct. Some of them are shaped more like those of purring cats, but much bigger. 

[Related: Orangutans can make two sounds at the same time.]

According to the team, if the missing bones (the epihyoid bones) were the key to different vocalizations, then the bones that are most closely connected to them should appear different between purrers and roarers. Those bones actually looked very similar in shape in the purring variety of cats.

The team saw more shape variation in the bones that are closer to the vocal apparatus, like the the thyrohyoid and basihyoid bones. Having these key hyoid bones shaped like those belonging to purring cats may indicate that they purred like a kitten instead of roaring like a lion, but it is still a bit of a prehistoric mystery. 

“It is perhaps most likely that the size of the hyoids plays a role in the pitch of vocalization,” said Deutsch. “Although Smilodon wasn’t quite as big as the largest modern cats, its hyoid bones are substantially larger than those of any of their living relatives, so potentially they had even deeper vocalizations than the largest tigers and lions.”

The post Mighty sabertooth tigers may have purred like kittens appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>