Biology | Popular Science https://www.popsci.com/category/biology/ Awe-inspiring science reporting, technology news, and DIY projects. Skunks to space robots, primates to climates. That's Popular Science, 145 years strong. Fri, 20 Oct 2023 15:00:00 +0000 en-US hourly 1 https://wordpress.org/?v=6.2.2 https://www.popsci.com/uploads/2021/04/28/cropped-PSC3.png?auto=webp&width=32&height=32 Biology | Popular Science https://www.popsci.com/category/biology/ 32 32 Prehistoric shark called Kentucky home 337 million years ago https://www.popsci.com/science/new-shark-kentucky/ Fri, 20 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=581547
An illustration of a newly discovered shark species called Strigilodus tollesonae. The shark looks somewhat like a stingray, with outstretched wings, fan-like top fins, and a long tail with black spots.
An artist’s illustration of Strigilodus tollesonae. The new species is more closely related to modern ratfish than to other modern sharks and rays. Benji Paysnoe/NPS

Newly discovered Strigilodus tollesonae had petal-shaped teeth.

The post Prehistoric shark called Kentucky home 337 million years ago appeared first on Popular Science.

]]>
An illustration of a newly discovered shark species called Strigilodus tollesonae. The shark looks somewhat like a stingray, with outstretched wings, fan-like top fins, and a long tail with black spots.
An artist’s illustration of Strigilodus tollesonae. The new species is more closely related to modern ratfish than to other modern sharks and rays. Benji Paysnoe/NPS

A group of paleontologists, park rangers, and geologists have discovered a new species of ancient shark in the rock layers of Mammoth Cave National Park in Kentucky. It was uncovered in a large fossil deposit that includes at least 40 different species of shark and their relatives, and even well-preserved skeletal cartilage. 

[Related: Megalodons were likely warm-blooded, despite being stone-cold killers.]

The new species is named Strigilodus tollesonae and is a petalodont shark. These extinct  sharks had petal-shaped teeth and lived about 337 million years ago. According to the National Park Service, it is more closely related to present day ratfish than sharks or rays and it was identified from teeth found in the cave’s walls. Strigilodus tollesonae likely had teeth that included one rounded cusp used for clipping and a long, ridge inert side that crushed prey the way molars do. Paleontologists believe that it likely lived like modern day skates and fed on worms, bivalves, and small fish. 

Strigilodus tollesonae translates to “Tolleson’s Scraper Tooth” and it is named after Mammoth Cave National park guide Kelli Tolleson for her work in the paleontological study that uncovered the new species. 

The limestone caves that make up the 400-mile long Mammoth Cave System were formed about 325-million-years ago during the Late Paleozoic. Geologists call this time period the Mississippian Period, when shallow seas covered much of North America including where Mammoth Cave is today. 

In 2019, the park began a major paleontological resources inventory to identify the numerous types of fossils associated with the rock layers. Mammoth Cave park staff reported a few fossil shark teeth that were exposed in the cave walls of Ste. Genevieve Limestone in several locations. Shark fossils can be difficult to come by, since shark skeletons are made of cartilage instead of bone. Cartilage is not as tough as bone, so it is generally not well-preserved in the fossil record. 

An artist’s illustration of an ancient sea that covered much of North America during the Mississippian age. A decaying shark lies on the bottom of the sea, with three live sharks and other fish swimming nearby.
The Mississippian age ancient sea and marine life preserved at Mammoth Cave National Park. CREDIT: Julius Csotonyi/NPS.

The team then brought in shark fossil specialist John-Paul Hodnett of the Maryland-National Capital Parks and Planning Commission to help identify the shark fossils. Hodnett and park rangers discovered and identified multiple different species of primitive sharks from the shark teeth and fine spine specimens in the rocks lining the cave passages.

“I am absolutely amazed at the diversity of sharks we see while exploring the passages that make up Mammoth Cave,” Hodnett said in a statement. “We can hardly move more than a couple of feet as another tooth or spine is spotted in the cave ceiling or wall. We are seeing a range of different species of chondrichthyans [cartilaginous fish] that fill a variety of ecological niches, from large predators to tiny little sharks that lived amongst the crinoid [sea lily] forest on the seafloor that was their habitat.”

[Related: This whale fossil could reveal evidence of a 15-million-year-old megalodon attack.]

In addition to Strigilodus tollesonae, the team have identified more than 40 different species of sharks and their relatives from Mammoth Cave specimens in the past 10 months. There appear to be at least six fossil shark species that are new to science. According to the team, those species will be described and named in an upcoming scientific publication.

The majority of the shark fossils have been discovered in areas of the park that are inaccessible to the public, so photographs, illustrations, and three-dimensional models have been made to display the discovery. The park also plans to celebrate the new shark fossils with multiple presentations and exhibits on Monday October 23

The post Prehistoric shark called Kentucky home 337 million years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Female honeybees may pass down ‘altruistic’ genes https://www.popsci.com/environment/honeybees-altruism/ Wed, 18 Oct 2023 17:00:00 +0000 https://www.popsci.com/?p=580768
A group of worker bees surround the queen bee on a honeycomb. All worker honeybees are female and they can go to extreme lengths to serve their queen even shedding their own ovaries.
All worker honeybees are female and they can go to extreme lengths to serve their queen even shedding their own ovaries. Deposit Photos

Honeybee genes might make workers serve the queen above themselves.

The post Female honeybees may pass down ‘altruistic’ genes appeared first on Popular Science.

]]>
A group of worker bees surround the queen bee on a honeycomb. All worker honeybees are female and they can go to extreme lengths to serve their queen even shedding their own ovaries.
All worker honeybees are female and they can go to extreme lengths to serve their queen even shedding their own ovaries. Deposit Photos

Honeybees are a model of teamwork in nature, with their complex society and hives that generate enough energy to create an electrical charge. They also appear to be some of the rare animals that display a unique trait of altruism, which is genetically inherited. The findings were described in a study published September 25 in the journal Molecular Ecology.

[Related: Bee brains could teach robots to make split-second decisions.]

Giving it all for the queen bee

According to the American Psychological Association, humans display altruism through behaviors that benefit another individual at a cost to oneself. Some psychologists consider it a uniquely human trait and studying it in animals requires a different framework for understanding. Animals experience a different level of cognition, so what drives humans to be altruistic might be different than what influences animals like honeybees to act in ways that appear to be altruistic.

In this new study, the researchers first looked at the genetics behind retinue behavior in worker honeybees. Retinue behavior is the actions of worker bees taking care of the queen, like feeding or grooming her. It’s believed to be triggered by specific pheromones and worker bees are always female. 

After the worker bees are exposed to the queen’s mandibular pheromone (QMP), they deactivate their own ovaries. They then help spread the QMP around to the other worker bees and they only take care of the eggs that the queen bee produces. Entomologists consider this behavior ‘altruistic’ because it benefits the queen’s ability to produce offspring, while the worker bees remain sterile. 

The queen is also typically the mother of all or mostly all of the honeybees in the hive. The genes that make worker bees more receptive to the queen’s pheromone and retinue behavior can be passed down from either female or male parent. However, the genes only result in altruistic behavior when they are passed down from the female bee parent.

“People often think about different phenotypes being the result of differences in gene sequences or the environment. But what this study shows is it’s not just differences in the gene itself—it’s which parent the gene is inherited from,” study co-author and Penn State University doctoral candidate Sean Bresnahan said in a statement. “By the very nature of the insect getting the gene from its mom, regardless of what the gene sequence is, it’s possibly going to behave differently than the copy of the gene from the dad.”

A battle of genetics 

The study supports a theory called the Kinship Theory of Intragenomic Conflict. It suggests that a mothers’ and fathers’ genes are in a conflict over what behaviors to support and not support. Previous studies have shown that genes from males can support selfish behavior in mammals, plants, and honeybees. This new study is the first known research that shows females can pass altruistic behavior onto their offspring in their genes. 

[Really: What busy bees’ brains can teach us about human evolution.]

Worker bees generally have the same mother but different fathers, since the queen mates with multiple male bees. This means that the worker bees share more of their mother’s genes with each other. 

“This is why the Kinship Theory of Intragenomic Conflict predicts that genes inherited from the mother will support altruistic behavior in honeybees,” Breshnahan said. “A worker bee benefits more from helping, rather than competing with, her mother and sisters—who carry more copies of the worker’s genes than she could ever reproduce on her own. In contrast, in species where the female mates only once, it is instead the father’s genes that are predicted to support altruistic behavior.”

Pinpointing conflict networks

To look closer, the team crossbred six different lineages of honeybees. Bresnahan says that this is relatively easy to do in mammals or plants, but more difficult in insects. They used honeybee breeding expertise from co-author Juliana Rangel from Texas A&M University and Robyn Underwood at Penn State Extension to create these populations.

Once the bee populations were successfully crossed and the offspring were old enough, the team assessed the worker bees’ responsiveness to the pheromone that triggers the retinue behavior. 

A female lab technician wearing a protective covering to keep her safe from bee stings points to a bee hive on a rooftop lab.
Penn State Grozinger lab technician Kate Anton inspectS a hive on the rooftop of Millennium Science Complex at Penn State University. CREDIT: Brennan Dincher

“So, we could develop personalized genomes for the parents, and then map back the workers’ gene expression to each parent and find out which parent’s copy of that gene is being expressed,” Bresnahan said.

The team identified the gene regulatory networks that have this intragenomic conflict, finding that more genes that have a parental bias were expressed. These networks consisted of genes that previous research showed were related to the retinue behavior.

“Observing intragenomic conflict is very difficult, and so there are very few studies examining the role it plays in creating variation in behavior and other traits,” study co-author and Penn State entomologist Christina Grozinger said in a statement. “The fact that this is the third behavior where we have found evidence that intragenomic conflict contributes to variation in honeybees suggests that intragenomic conflict might shape many types of traits in bees and other species.”

The team hopes that this research will help provide a blueprint for more studies into intragenomic conflict in other animals and plants.

The post Female honeybees may pass down ‘altruistic’ genes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Unraveled nerves and mesmerizing caffeine crystals: 10 sensational glimpses of the microscopic realm https://www.popsci.com/science/10-microscopic-images-nikon-small-world-gallery/ Tue, 17 Oct 2023 14:00:00 +0000 https://www.popsci.com/?p=579496
A fluorescent microscopic image, magnified 20 times, of a rodent nerve.
Rodent optic nerve head showing astrocytes (yellow), contractile proteins (red) and retinal vasculature (green). Hassanain Qambari & Jayden Dickson/Nikon’s Small World Photomicrography Competition

Photos from the Nikon Small World competition reveal a world that appears unreal.

The post Unraveled nerves and mesmerizing caffeine crystals: 10 sensational glimpses of the microscopic realm appeared first on Popular Science.

]]>
A fluorescent microscopic image, magnified 20 times, of a rodent nerve.
Rodent optic nerve head showing astrocytes (yellow), contractile proteins (red) and retinal vasculature (green). Hassanain Qambari & Jayden Dickson/Nikon’s Small World Photomicrography Competition

For nearly half a century, Nikon’s Small World Photomicrography Competition has celebrated the beauty captured by extreme magnification. This year, the photomicrography contest was stacked: a panel of journalists and scientists selected winners from 1,900 entries submitted by researchers and photographers in 72 countries. Subjects as diverse as mutant fish, chemical reactions, and a speck of space rock became works of art when seen really, really up close.

Above, in first place, is a rodent’s optic nerve head. Blood vessels, each only 110 microns in diameter, radiate outward like the fizzing arms of a firework. The yellow star-like shapes surrounding the vessels are astrocytes, cellular helpers that maintain neuronal systems. Vision researchers at the Lions Eye Institute in Perth, Australia—Hassanain Qambari, assisted by Jayden Dickson—imaged the optic disc at 20x magnification as part of a study of diabetic retinopathy; this condition can cause blindness in people with diabetes.

“The visual system is a complex and highly specialized organ, with even relatively minor perturbations to the retinal circulation able to cause devastating vision loss,” Qambari said in a news release. “I entered the competition as a way to showcase the complexity of retinal microcirculation.” Below are other top photos, and you can see even more at Nikon’s Small World site.

A zebrafish head magnified 4x with purple and blue highlights.
20th place. Adult transgenic zebrafish head showing blood vessels (blue), lymphatic vessels (yellow), and the skin and scales (magenta). Imaged with a 4x objective lens. Daniel Castranova & Dr. Brant Weinstein/Nikon Small World Competition
A close-up of a match igniting.
2nd place. Matchstick igniting by the friction surface of the box. Imaged with a 2.5x objective lens. Ole Bielfeldt/Nikon Small World competition
Caffeine crystals under 25x magnification.
8th place. Caffeine crystals under 25x objective lens magnification. Stefan Eberhard/Nikon Small World Competition

[Related: 15 remarkable JWST images that reveal the wonders of our vast universe]

A rainbow of defensive hairs on a plant leaf.
5th place. Auto-fluorescing defensive hairs covering the leaf surface of the Russian olive, Eleagnus angustifolia, exposed to UV light. Imaged with 10x magnification. David Maitland/Nikon Small World competition
A black micrometeorite on a golden metal mesh.
18th place. A cryptocrystalline micrometeorite resting on a #80 testing sieve. Imaged with a 20x objective lens. Scott Peterson/Nikon Small World competition
9th place. Cytoskeleton of a dividing myoblast highlighting the cellular components tubulin (cyan), F-actin (orange) and nucleus (magenta), magnified 63x.
9th place. Cytoskeleton of a dividing myoblast highlighting the cellular components tubulin (cyan), F-actin (orange) and nucleus (magenta), magnified 63x. Vaibhav Deshmukh/Nikon Small World competition
Blue wave-like folds of a sugar syrup.
11th place. Crystallized sugar syrup in polarized light, seen via a 25x lens. Diego García/Nikon Small World competition
7th place. A mouse embryo imaged with 4x objective lens magnification.
7th place. A mouse embryo imaged with 4x objective lens magnification. Grigorii Timin & Michel Milinkovitch/Nikon Small World Competition
A spider fang, really zoomed in.
4th place. Venomous fangs of a small tarantula seen using 10x magnification. John-Oliver Dum/Nikon Small World competition

The post Unraveled nerves and mesmerizing caffeine crystals: 10 sensational glimpses of the microscopic realm appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
12-million-year-old ape skull bares its fangs in virtual reconstruction https://www.popsci.com/science/12-million-year-old-ape-skull/ Mon, 16 Oct 2023 19:00:00 +0000 https://www.popsci.com/?p=579915
Three stage of digital reconstruction. From left, the Pierolapithecus cranium shortly after discovery, after initial preparation, and after virtual reconstruction.
From left, the Pierolapithecus cranium shortly after discovery, after initial preparation, and after virtual reconstruction. David Alba (left)/Salvador Moyà-Solà (middle)/Kelsey Pugh (right)

Now extinct, Pierolapithecus catalaunicus could be one of the earliest known members of the great ape and human family.

The post 12-million-year-old ape skull bares its fangs in virtual reconstruction appeared first on Popular Science.

]]>
Three stage of digital reconstruction. From left, the Pierolapithecus cranium shortly after discovery, after initial preparation, and after virtual reconstruction.
From left, the Pierolapithecus cranium shortly after discovery, after initial preparation, and after virtual reconstruction. David Alba (left)/Salvador Moyà-Solà (middle)/Kelsey Pugh (right)

A team of scientists from Spain and the United States reconstructed the skull of an extinct great ape species from a set of well-preserved, but damaged skeletal remains. The bones belonged to Pierolapithecus catalaunicus who lived roughly 12 million years ago. Studying its facial features could help us better understand human and ape evolution and the findings are described in a study published October 16 in the journal Proceedings of the National Academy of Sciences (PNAS).

[Related: This 7th-century teen was buried with serious bling—and we now know what she may have looked like.]

First described in 2004, Pierolapithecus was a member of a diverse group of extinct ape species that lived during the Miocene Epoch (about 15 to 7 million years ago) in Europe. During this time, horses were beginning to evolve in North America and the first dogs and bears also began to appear. The Miocene was also a critical time period for primate evolution.

In the study, the team used CT scans to virtually reconstruct Pierolapithecus’ cranium. They then used a process called principal components analysis and compared their digital reconstruction of the face with other primate species. They then modeled the changes occurring to some key features of ape facial structure. They found that Pierolapithecus shares similarities in its overall face shape and size with fossilized and living great apes. 

However, it also has distinct facial features that have not been found in other apes from the Middle Miocene. According to the authors, these results are consistent with the idea that Pierolapithecus represents one of the earliest members of the great ape and human family. 

“An interesting output of the evolutionary modeling in the study is that the cranium of Pierolapithecus is closer in shape and size to the ancestor from which living great apes and humans evolved,” study co-author and AMNH paleoanthropologist Sergio Almécija said in a statement. “On the other hand, gibbons and siamangs (the ‘lesser apes’) seem to be secondarily derived in relation to size reduction.”

Studying the physiology of extinct animals like Pierolapithecus can help us understand how other species evolved. This particular primate species is important because the team used a cranium and partial skeleton that belonged to the same individual ape, which is a rarity in the fossil record. 

[Related: Our tree-climbing ancestors evolved our abilities to throw far and reach high.]

“Features of the skull and teeth are extremely important in resolving the evolutionary relationships of fossil species, and when we find this material in association with bones of the rest of the skeleton, it gives us the opportunity to not only accurately place the species on the hominid family tree, but also to learn more about the biology of the animal in terms of, for example, how it was moving around its environment,” study co-author Kelsey Pugh said in a statement. Pugh is a primate palaeontologist with the American Museum of Natural History (AMNH) in New York and Brooklyn College.

Earlier studies on Pierolapithecus suggest that it could have stood upright and had multiple adaptations that allowed these hominids to hang from tree branches and move throughout them. However, Pierolapithecus’ evolutionary position is still debated, partially due to the damage to the specimen’s cranium.  

“One of the persistent issues in studies of ape and human evolution is that the fossil record is fragmentary, and many specimens are incompletely preserved and distorted,” study-coauthor and AMNH biological anthropologist Ashley Hammond said in a statement. “This makes it difficult to reach a consensus on the evolutionary relationships of key fossil apes that are essential to understanding ape and human evolution.”

The post 12-million-year-old ape skull bares its fangs in virtual reconstruction appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Galapagos giant tortoises are restoring their own ecosystem https://www.popsci.com/environment/galapagos-giant-tortoises-ecosystem-conservation/ Sun, 15 Oct 2023 22:00:00 +0000 https://www.popsci.com/?p=579488
A captive breeding program has seen the return of Galapagos giant tortoises to Española in the Galapagos Islands. As the tortoise population rebounds, the island ecosystem is in the process of transforming.
A captive breeding program has seen the return of Galapagos giant tortoises to Española in the Galapagos Islands. As the tortoise population rebounds, the island ecosystem is in the process of transforming. DepositPhotos

A decades-long project to reintroduce Galapagos giant tortoises is changing the face of the island of Española.

The post Galapagos giant tortoises are restoring their own ecosystem appeared first on Popular Science.

]]>
A captive breeding program has seen the return of Galapagos giant tortoises to Española in the Galapagos Islands. As the tortoise population rebounds, the island ecosystem is in the process of transforming.
A captive breeding program has seen the return of Galapagos giant tortoises to Española in the Galapagos Islands. As the tortoise population rebounds, the island ecosystem is in the process of transforming. DepositPhotos

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

In the late 19th century, whalers, settlers, and pirates changed the ecology of the Galapagos Islands by poaching some native species—like Galapagos giant tortoises—and introducing others, like goats and rats. The latter species became pests and severely destabilized the island ecosystems. Goats overgrazed the fruits and plants the tortoises ate while rats preyed on their eggs. Over time, the tortoise population plummeted. On Española, an island in the southeast of the archipelago, the tortoise count fell from over 10,000 to just 14. Along the way, with goats eating all the plants they could, Española—once akin to a savanna—turned barren.

A century later, conservationists set out to restore the Galapagos giant tortoise on Española—and the island ecosystem. They began eradicating the introduced species and capturing Española’s remaining tortoises and breeding them in captivity. With the goats wiped out and the tortoises in cages, the ecosystem transformed once again. This time, the overgrazed terrain became overgrown with densely packed trees and woody bushes. Española’s full recovery to its savanna-like state would have to wait for the tortoises’ return.

From the time those 14 tortoises were taken into captivity between 1963 and 1974 until they were finally released in 2020, conservationists with the NGO Galápagos Conservancy and the Galapagos National Park Directorate reintroduced nearly 2,000 captive-bred Galapagos giant tortoises to Española. Since then, the tortoises have continued to breed in the wild, causing the population to blossom to an estimated 3,000. They’ve also seen the ecology of Española transform once more as the tortoises are reducing the extent of woody plants, expanding the grasslands, and spreading the seeds of a key species.

Not only that, but the tortoises’ return has also helped the critically endangered waved albatross—a species that breeds exclusively on Española. During the island’s woody era, Maud Quinzin, a conservation geneticist who has previously worked with Galapagos tortoises, says that people had to repeatedly clear the areas the seabirds use as runways to take off and land. Now, if the landing strips are getting overgrown, they’ll move tortoises into the area to take care of it for them.

The secret to this success is that—much like beavers, brown bears, and elephants—giant tortoises are ecological architects. As they browse, poop, and plod about, they alter the landscape. They trample young trees and bushes before they can grow big enough to block the albatrosses’ way. The giant tortoises likewise have a potent impact on the giant species of prickly pear cactuses that call Española home—one of the tortoises’ favorite foods and an essential resource for the island’s other inhabitants.

When the tortoises graze the cactus’s fallen leaves, they prevent the paddle-shaped pads from taking root and competing with their parents. And, after they eat the cactus’s fruit, they drop the seeds across the island in balls of dung that offer a protective shell of fertilizer.

The extent of these and other ecological effects of the tortoise are documented in a new study by James Gibbs, a conservation scientist and the president of the Galápagos Conservancy, and Washington Tapia Aguilera, the director of the giant tortoise restoration program at the Galápagos Conservancy.

To study these impacts up close, they fenced off some of the island’s cactuses, which gave them a way to assess how the landscapes evolve when they’re either exposed to or free from the tortoises’ influences. They also studied satellite imagery of the island captured between 2006 and 2020 and found that while parts of the island are still seeing an increase in the density of bushes and trees, places where the tortoises have rebounded are more open and savanna-like.

As few as one or two tortoises per hectare, the scientists write, is enough to trigger a shift in the landscape.

Dennis Hansen, a conservation ecologist who has worked with the tortoises native to the Aldabra atoll in the Indian Ocean, says that while the findings line up with what conservationists expected, it was nice to have their suspicions confirmed. The results bode well for other rewilding projects that include giant tortoise restoration as a keystone of their efforts, he says, such as those underway on other islands in the Galapagos archipelago and on the Mascarene Islands in the Indian Ocean.

But on Española itself, though the tortoises have been busy stomping shoots and spreading seeds, they have more work to do. In 2020, 78 percent of Española was still dominated by woody vegetation. Gibbs says it may take another couple of centuries for Española’s giant tortoises to reestablish something like the ratio of grasses, trees, and bushes that existed before Europeans landed in the archipelago. But that long transformation is at least underway.

This article first appeared in Hakai Magazine and is republished here with permission.

The post Galapagos giant tortoises are restoring their own ecosystem appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Climate change could help fungal diseases thrive https://www.popsci.com/environment/climate-change-fungal-diseases/ Sat, 14 Oct 2023 23:00:00 +0000 https://www.popsci.com/?p=579478
Rising temperatures are making conditions more favorable for disease-causing fungi — and may even be helping them adapt to infect people.
Rising temperatures are making conditions more favorable for disease-causing fungi — and may even be helping them adapt to infect people. DepositPhotos

Disease-causing fungi are likely to thrive in a warmer, stormier world — and more of them might be poised to make the leap to infecting people.

The post Climate change could help fungal diseases thrive appeared first on Popular Science.

]]>
Rising temperatures are making conditions more favorable for disease-causing fungi — and may even be helping them adapt to infect people.
Rising temperatures are making conditions more favorable for disease-causing fungi — and may even be helping them adapt to infect people. DepositPhotos

This article originally appeared in Knowable Magazine.

Back at the turn of the 21st century, Valley fever was an obscure fungal disease in the United States, with fewer than 3,000 reported cases per year, mostly in California and Arizona. Two decades later, cases of Valley fever are exploding, increasing more than sevenfold and expanding to other states.

And Valley fever isn’t alone. Fungal diseases in general are appearing in places they have never been seen before, and previously harmless or mildly harmful fungi are turning deadly for people. One likely reason for this worsening fungal situation, scientists say, is climate change. Shifts in temperature and rainfall patterns are expanding where disease-causing fungi occur; climate-triggered calamities can help fungi disperse and reach more people; and warmer temperatures create opportunities for fungi to evolve into more dangerous agents of disease.

For a long time, fungi have been a neglected group of pathogens. By the early 2000s, researchers were already warning that climate change would make bacterial, viral and parasite-caused infectious diseases like cholera, dengue and malaria more widespread. “But people were not focused at all on the fungi,” says Arturo Casadevall, a microbiologist and immunologist at the Johns Hopkins Bloomberg School of Public Health. That’s because, until recently, fungi haven’t troubled humans much.

Our high body temperature helps explain why. Many fungi grow best at around 12 to 30 degrees Celsius (roughly 54 to 86 degrees Fahrenheit). So, while they find it easy to infect trees, crops, amphibians, fish, reptiles and insects — organisms that do not maintain consistently high internal body temperatures — fungi usually don’t thrive inside the warm bodies of mammals, Casadevall wrote in an overview of immunity to invasive fungal diseases in the 2022 Annual Review of Immunology. Among the few fungi that do infect humans, some dangerous ones, such as species of Cryptococcus, Penicillium and Aspergillus, have historically been reported more in tropical and subtropical regions than in cooler ones. This, too, suggests that climate may limit their reach.

Fungi on the move

Today, however, the planet’s warming climate may be helping some fungal pathogens spread to new areas. Take Valley fever, for instance. The disease can cause flu-like symptoms in people who breathe in the microscopic spores of the fungus Coccidioides. The climatic conditions favoring Valley fever may occur in 217 counties of 12 US states today, according to a recent study by Morgan Gorris, an Earth system scientist at the Los Alamos National Laboratory in New Mexico.

But when Gorris modeled where the fungi could live in the future, the results were sobering. By 2100, in a scenario where greenhouse gas emissions continue unabated, rising temperatures would allow Coccidioides to spread northward to 476 counties in 17 states. What was once thought to be a disease mostly restricted to the southwestern US could expand as far as the US-Canadian border in response to climate change, Gorris says. That was a real “wow moment,” she adds, because that would put millions more people at risk.

Biology photo

Some other fungal diseases of humans are also on the move, such as histoplasmosis and blastomycosis. Both, like Valley fever, are increasingly seen outside what was thought to be their historical range.

Such range extensions have also appeared in fungal pathogens of other species. The chytrid fungus that has contributed to declines in hundreds of amphibian species, for example, grows well at environmental temperatures between 17 and 25 degrees Celsius (63 to 77 degrees Fahrenheit). But the fungus is becoming an increasing problem at higher altitudes and latitudes, likely because rising temperatures are making previously cold regions more welcoming for the chytrid. Similarly, white pine blister rust, a fungus that has devastated some species of white pines across Europe and North America, is expanding to higher elevations where conditions were previously unfavorable. This has put more pine forests at risk. Changing climatic conditions are also helping drive fungal pathogens of crops, like those infecting bananas, potatoes and wheat, to new areas.

A warming climate also changes cycles of droughts and intense rains, which can increase the risk of fungal diseases in humans. One study of more than 81,000 cases of Valley fever in California between 2000 and 2020 found that infections tended to surge in the two years immediately following prolonged droughts. Scientists don’t yet fully understand why this happens. But one hypothesis suggests that Coccidioides survives better than its microbial competitors during long droughts, then grows quickly once rains return and releases spores into the air when the soil begins to dry again. “So climate is not only going to affect where it is, but how many cases we have from year to year,” says Gorris.

By triggering more intense and frequent storms and fires, climate change can also help fungal spores spread over longer distances. Doctors have observed unusually large outbreaks of Valley fever just after dust storms or other events that kick up clouds of dust. Similarly, researchers have found a surge in Valley fever infections in California hospitals after large wildfires as far as 200 miles away. Scientists have seen this phenomenon in other species too: Dust storms originating in Africa have been implicated in moving a coral-killing soil fungus to the Caribbean.

Researchers are now sampling the air in dust storms and wildfires to see if these events can actually carry viable, disease-causing fungi for long distances and bring them to people, causing infections. Understanding such dispersal is key to figuring out how diseases spread, says Bala Chaudhary, a fungal ecologist at Dartmouth College who coauthored an overview of fungal dispersal in the 2022 Annual Review of Ecology, Evolution, and Systematics. But there’s a long road ahead: Scientists still don’t have answers to several basic questions, such as where various pathogenic fungi live in the environment or the exact triggers that liberate fungal spores out of soil and transport them over long distances to become established in new places.

Evolving heat tolerance

Helping existing fungal diseases reach newer places isn’t the only effect of climate change. Warming temperatures can also help previously innocuous fungi evolve tolerance for heat and become deadlier. Researchers have long known that fungi are capable of this. In 2009, for example, researchers showed that a fungus — in this case a pathogen that infects hundreds of insect pests — could evolve to grow at 37 degrees Celsius, five degrees higher than its previous upper thermal limit, after just four months. More recently, researchers grew a dangerous human pathogen, Cryptococcus deneoformans, at both 37 degrees Celsius (similar to human body temperature) and 30 degrees Celsius in the lab. The higher temperature triggered a fivefold rise in mutations in the fungus’s DNA compared to the lower temperature. Rising global temperatures, the researchers speculate, could thus help some fungi rapidly adapt, increasing their ability to infect people.

There are examples from the real world too. Before 2000, the stripe rust fungus, which devastates wheat crops, was restricted to cool, wet parts of the world. But since 2000, certain strains of the fungus have become better adapted to higher temperatures. These sturdier strains have been replacing the older strains and spreading to new regions.

Biology photo

This is worrying, says Casadevall, especially with hotter days and heatwaves becoming more frequent and intense. “Microbes really have two choices: adapt or die,” he says. “Most of them have some capacity to adapt.” As climate change increases the number of hot days, evolution will select more strongly for heat-resistant fungi.

And as fungi in the environment adapt to tolerate heat, some might even become capable of breaching the human temperature barrier.

This may have happened already. In 2009, doctors in Japan isolated an unknown fungus from the ear discharge of a 70-year-old woman. This new-to-medicine fungus, which was given the name Candida auris, soon spread to hospitals around the world, causing life-threatening bloodstream infections in already sick patients. The World Health Organization now lists Candida auris among its most dangerous group of fungal pathogens, partly because the fungus is showing increasing resistance to common antifungal drugs.

“In the case of India, it’s really a nightmare,” says Arunaloke Chakrabarti, a medical mycologist at the Postgraduate Institute of Medical Education and Research in Chandigarh, India. When C. auris was first reported in India more than a decade ago, it was low on the list of Candida species threatening patients, Chakrabarti says, but now, it’s the leading cause of Candida infections. In the US, cases rose sharply from 63 between 2013 and 2016 to more than 2,300 in 2022.

Where did C. auris come from so suddenly? The fungus appeared simultaneously across three different continents. Each continent’s version of the fungus was genetically distinct, suggesting that it emerged independently on each continent. “It’s not like somebody took a plane and carried them,” says Casadevall. “The isolates are not related.”

Biology photo

Since all continents are exposed to the effects of climate change, Casadevall and his colleagues think that human-induced global warming may have played a role. C. auris may always have existed somewhere in the environment — potentially in wetlands, where researchers have recovered other pathogenic species of Candida. Climate change, they argued in 2019, may have exposed the fungus to hotter conditions over and over again, allowing some strains to become heat-tolerant enough to infect people.

Subsequently, scientists from India and Canada found C. auris in nature for the first time, in the Andaman Islands in the Bay of Bengal. This “wild” version of C. auris grew much slower at human body temperature than did the hospital versions. “What that suggests to me is that this stuff is all over the environment and some of the isolates are adapting faster than others,” says Casadevall.

Like other explanations for C. auris’s origin, Casadevall’s is only a hypothesis, says Chakrabarti, and still needs to be proved.

One way to establish the climate change link, Casadevall says, would be to review old soil samples and see if they have C. auris in them. If the older versions of the fungus don’t grow well at higher temperatures, but over time they start to, that would be good evidence that they’re adapting to heat.

In any case, the possibility of warmer temperatures bringing new fungal pathogens to humans needs to be taken seriously, says Casadevall — especially if drug-resistant fungi that currently infect species of insects and plants become capable of growing at human body temperature. “Then we find ourselves with organisms that we never knew before, like Candida auris.”

Doctors are already encountering novel fungal infections in people, such as five new-to-medicine species of Emergomyces that have appeared mostly in HIV-infected patients across four continents, and the first record of Chondrostereum purpureum — a fungus that infects some plants of the rose family — infecting a plant mycologist in India. Even though these emerging diseases haven’t been directly linked to climate change, they highlight the threat fungal diseases pose. For Casadevall, the message is clear: It’s time to pay more attention.

Editor’s note: This story was updated on September 27, 2023, to correct a mischaracterization of malaria. It is caused by a parasite, not a virus or a bacterium as was originally stated.

10.1146/knowable-092623-2

Shreya Dasgupta is an independent science journalist based in Bangalore, India.

This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter.

Knowable Magazine | Annual Reviews

The post Climate change could help fungal diseases thrive appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
AI design for a ‘walking’ robot is a squishy purple glob https://www.popsci.com/technology/ai-robot-blob/ Fri, 13 Oct 2023 15:30:00 +0000 https://www.popsci.com/?p=579501
AI-designed multi-legged robots on table
They may not look like much, but they skipped past billions of years' of evolution to get those little legs. Northwestern University

During testing, the creation could walk half its body length per second—roughly half as fast as the average human stride.

The post AI design for a ‘walking’ robot is a squishy purple glob appeared first on Popular Science.

]]>
AI-designed multi-legged robots on table
They may not look like much, but they skipped past billions of years' of evolution to get those little legs. Northwestern University

Sam Kreigman and his colleagues made headlines a few years back with their “xenobots”— synthetic robots designed by AI and built from biological tissue samples. While experts continue to debate how to best classify such a creation, Kriegman’s team at Northwestern University has been hard at work on a similarly mind-bending project meshing artificial intelligence, evolutionary design, and robotics.

[Related: Meet xenobots, tiny machines made out of living parts.]

As detailed in a new paper published earlier this month in the Proceedings of the National Journal of Science, researchers recently tasked an AI model with a seemingly straightforward prompt: Design a robot capable of walking across a flat surface. Although the program delivered original, working examples within literal seconds, the new robots “[look] nothing like any animal that has ever walked the earth,” Kriegman said in Northwestern’s October 3 writeup.

And judging from video footage of the purple multi-“legged” blob-bots, it’s hard to disagree:

After offering their prompt to the AI program, the researchers simply watched it analyze and iterate upon a total of nine designs. Within just 26 seconds, the artificial intelligence managed to fast forward past billions of years of natural evolutionary biology to determine legged movement as the most effective method of mobility. From there, Kriegman’s team imported the final schematics into a 3D printer, which then molded a jiggly, soap bar-sized block of silicon imbued with pneumatically actuated musculature and three “legs.” Repeatedly pumping air in and out of the musculature caused the robots’ limbs to expand and contract, causing movement. During testing, the robot could walk half its body length per second—roughly half as fast as the average human stride.

“It’s interesting because we didn’t tell the AI that a robot should have legs,” Kriegman said. “It rediscovered that legs are a good way to move around on land. Legged locomotion is, in fact, the most efficient form of terrestrial movement.”

[Related: Disney’s new bipedal robot could have waddled out of a cartoon.]

If all this weren’t impressive enough, the process—dubbed “instant evolution” by Kriegman and colleagues—all took place on a “lightweight personal computer,” not a massive, energy-intensive supercomputer requiring huge datasets. According to Kreigman, previous AI-generated evolutionary bot designs could take weeks of trial and error using high-powered computing systems. 

“If combined with automated fabrication and scaled up to more challenging tasks, this advance promises near-instantaneous design, manufacture, and deployment of unique and useful machines for medical, environmental, vehicular, and space-based tasks,” Kriegman and co-authors wrote in their abstract.

“When people look at this robot, they might see a useless gadget,” Kriegman said. “I see the birth of a brand-new organism.”

The post AI design for a ‘walking’ robot is a squishy purple glob appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Neanderthals may have hunted mighty cave lions https://www.popsci.com/science/neanderthal-cave-lion-hunt/ Fri, 13 Oct 2023 13:00:00 +0000 https://www.popsci.com/?p=579416
The cave lion remains from Siegsdorf, Germany are displayed alongside a reproduction of a wooden spear similar to those used by Neanderthals.
The cave lion remains from Siegsdorf, Germany are displayed alongside a reproduction of a wooden spear similar to those used by Neanderthals. Volker Minkus/NLD

The fierce feline predators went extinct at the end of the last Ice Age.

The post Neanderthals may have hunted mighty cave lions appeared first on Popular Science.

]]>
The cave lion remains from Siegsdorf, Germany are displayed alongside a reproduction of a wooden spear similar to those used by Neanderthals.
The cave lion remains from Siegsdorf, Germany are displayed alongside a reproduction of a wooden spear similar to those used by Neanderthals. Volker Minkus/NLD

Neanderthals cooked crab and created art, but they also could have haunted cave lions and used their skins. Some 48,000 year-old puncture wounds on a cave lion’s ribcage suggest that the big cat was killed by a Neanderthal’s wooden spear. The findings are described in a study published October 12 in the journal Scientific Reports and may be the earliest known example of lion hunting and butchering by these extinct humans.

[Related: Sensitive to pain? It could be your Neanderthal gene variants.]

For about 20,000 years, cave lions were the most dangerous animals in Eurasia, with a shoulder height of about 4.2 feet high. They lived in multiple environments and hunted large herbivores including mammoth, bison, hose, and cave bear. They get the name cave lions due to the fact that most of their bones have been found in Ice Age caves. The fearsome creatures went extinct at the end of the last Ice Age, but live on through their bones and the 34,000 rock art panels at Grotte Chauvet in France. 

In 1985, an almost complete cave lion skeleton was uncovered in Siegsdorf, Germany. The bones are believed to be from an old, medium-sized cave lion. There are cut marks across bones including two ribs, some vertebrae, and the left femur, which lead scientists to believe that ancient humans butchered the big cat after it died.  

However, the authors in this new study took another look at the remains. They describe a partial puncture wound located on the inside of the lion’s third rib. The wound appears to match the impact mark left by a wooden-tipped spear. The puncture is angled, which suggests that the spear entered the left of the lion’s abdomen and penetrated its vital organs before impacting the third rib on its right side. 

“The rib lesion clearly differs from bite marks of carnivores and shows the typical breakage pattern of a lesion caused by a hunting weapon,” Gabriele Russo, a study co-author and zooarchaeology PhD student at Universität Tübingen in Germany, said in a statement

The characteristics of the puncture wound also resemble the wounds found on deer vertebrae which are known to have been made by Neanderthal spears. The new findings could represent the earliest evidence of Neanderthals purposely hunting cave lions.

“The lion was probably killed by a spear that was thrust into the lion’s abdomen when it was already lying on the ground.” study co-author and University of Reading paleolithic archaeologist Annemieke Milks said in a statement

[Related: How many ancient humans does it take to fight off a giant hyena?]

The team also analyzed the findings from a 2019 excavation at the Unicorn Cave–or Einhornhöhle–in the Harz Mountains in Germany. The remains of several animals dating back to the last Ice Age or about 55,000 to 45,000 years ago were found, including some cave lion bones. They looked at bones from the toes and lower limbs of three cave lion specimens. These bones also had cut marks that are consistent with the markings generated when an animal is skinned.

The cut marks suggest that great care was taken while skinning the lion to ensure that the claws remained preserved within the fur. This finding could be the earliest evidence of Neanderthals using a lion pelt, potentially for cultural purposes.

“The interest of humans to gain respect and power from a lion trophy is rooted in Neanderthal behavior and until modern times the lion is a powerful symbol of rulers!” Thomas Terberger, a study co-author and archaeologist at the Universität Göttingen in Germany said in a statement

Future studies of cave lion bones could reveal more details of more complex Neanderthal behaviors and how the animal may have laid the basis for cultural development by our own species—Homo sapiens

The post Neanderthals may have hunted mighty cave lions appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
New human brain atlas is the most detailed one we’ve seen yet https://www.popsci.com/health/human-brain-cell-atlas/ Thu, 12 Oct 2023 19:15:00 +0000 https://www.popsci.com/?p=579123
A pinkish human brain against a black background.
One of the human brains examined in the suite of new studies that created the atlas. Lisa Keene and Amanda Kirkland of UW Medicine

The catalog of 3,000 cell types could be a game-changer for personalized medicine and animal models.

The post New human brain atlas is the most detailed one we’ve seen yet appeared first on Popular Science.

]]>
A pinkish human brain against a black background.
One of the human brains examined in the suite of new studies that created the atlas. Lisa Keene and Amanda Kirkland of UW Medicine

We’re closer than ever to mapping the entire brain to the microscopic level. Hundreds of neuroscientists across the world recently characterized more than 3,000 human brain cell types as part of the National Institute of Health’s BRAIN Initiative Cell Census Network, publishing almost two dozen papers in four Science journals today. This super-focused attention to detail could unlock many mysteries surrounding that complex organ, such as what happened in our brains to distinguish us from other primates. 

“This is the first large-scale, detailed description of all the different kinds of cells present in the human brain,” says Rebecca Hodge, an assistant investigator at the Allen Institute in Seattle who co-authored multiple studies in the paper package. Her hope is that this brain atlas provides a community resource for scientists to explore how the wide variety of brain cells contribute to health and disease.

Mark Mapstone, a professor of neurology at University of California, Irvine School of Medicine, who wasn’t involved with these studies, likened the new data about the brain to a tourist’s guide. “Imagine navigating an unfamiliar city with a roughly drawn street map containing only the major streets of the downtown compared to navigating the same city with a detailed map extending beyond the downtown to the suburbs and including all highways, two-way and one-way streets, alleyways, sidewalks, location of street signs and traffic signals, speed limits, and location of coffee shops and restaurants,” he says. “Cleary, the latter would make navigation and understanding the city much easier.” This first suite of studies shows three main ways the brain map can be used for biology and medicine.

An evolving brain

A human brain atlas can teach us about our evolutionary history. One study published today in Science used single-nucleus RNA sequencing to measure the gene expression of individual brain cells in humans and five other primate species, including chimpanzees and gorillas. In this method, scientists pull out individual cells from a piece of tissue, break them open to expose the genetic messengers inside, then use tags akin to tiny barcodes to identify that material. “This is the main technology used in some of these papers that are coming out and it’s a technique that’s only been around for the past 10 years,” Hodge says. Getting this genetic profile allows researchers to group clusters of cells into specific types. 

[Related: Psychedelics and anesthetics cause unexpected chemical reactions in the brain]

Our cells’ composition and organization is similar to those of our close relatives. However, the biggest differences seemed to occur in a brain region called the middle temporal gyrus, which is involved in processing semantic memory and language. Humans had higher numbers of projecting neurons in this area compared to other species. What’s more, the researchers highlighted a difference in gene expression that promoted synaptic plasticity, which is the ability of neurons to strengthen brain connections. This feature is an important component for learning and memory, and it might explain how humans developed complex cognitive skills.

A scientific graphic showing human and marmoset gene expression.
The gene expression of a class of neurons in a human (top) and marmoset (bottom).

There was some variation within humans, too. Another study found the most differences across humans in immune cells called microglia as well as deep-layer excitatory neurons, which are involved in the communication between distant brain regions. Researchers are not quite sure why—one theory is that deep-layer excitatory neurons develop earlier and are more exposed to environmental factors that could diversify their gene patterns. “Everyone’s brain is largely similar. Even though we have the same building blocks, it’s the small number of differences that matter,” says Jeremy Miller, a senior scientist at the Allen Institute, and co-author of the study. “We’re now starting to understand how important these changes are and figuring out what makes us uniquely human.”

Animal models

Because human brains share many features with other mammals, neurologists frequently use the small brains of mice to study diseases. The one problem, Miller says, is that mice don’t naturally develop neurodegenerative diseases common in humans. Scientists who want to study Alzheimer’s disease, for example, would need to manipulate multiple mouse genes to cause the kind of brain pathology seen in older people. This requires a comprehensive understanding of how cell types in the brain work together and how they change in the context of disease. 

[Related: How your brain conjures dreams]

Much brain research in mice focuses on the neocortex, responsible for higher cognitive function. It might seem reasonable to assume that much of the brain’s cellular complexity appears here. But this doesn’t seem to be the case. In one of the first studies to create a cell map of the entire adult brain, neuroscientists have found high levels of diversity in older evolutionary structures such as the midbrain, which is involved in movement, vision, and hearing, and the hindbrain, which governs vital bodily functions such as breathing and heart rate. In subcortical areas, there also appears to be a supercluster of cells called splatter neurons that control innate behaviors and physiological functions. Replicating the complexity of these particular brain regions in animal models could help better identify the cellular origins of human diseases. 

Personalized medicine

Imagine a future where treatments are tailored to someone’s specific needs. To do that, scientists would use a person’s genetic profile, rather than characteristics such as weight or age, to inform any medical decisions. Clinicians could also use this genetic information to identify the risks of potential diseases and provide early preventative measures. 

“A detailed brain atlas can help us understand what successful brain function looks like so we can maximize brain cells and circuits that promote brain heath,” Mapstone says. “Addressing brain disease and promoting brain health can be more easily accomplished if we know how these cells are organized. “

A schematic of the brain and related diseases. In the bottom graph,
Cell type (x-axis) association with 19 neuropsychiatric disorders and traits
A schematic of brain cells and related diseases. The bottom graph shows cell type association with 19 neuropsychiatric disorders and traits; darker red indicates stronger associations. Yang (Eric) Li, Ren Lab, University of California San Diego

Doctors are already using people’s genetic information to assess whether patients would be good candidates for a particular cancer treatment or to find the proper dose of a drug. This may soon include testing for neurological conditions. One study, which analyzed 1.1 million cells in 42 brain regions of neurotypical adults, identified specific neuronal cell types—mainly in the basal ganglia, a region involved in addictive behaviors—that were linked to 19 neuropsychiatric disorders and traits. Those conditions included schizophrenia and bipolar disorder as well as alcohol and tobacco use disorder.

This project is a step in the right direction for advancing research in personalized medicine, says Miller, though he warns this is only one of many to make this a reality for everyone. 

Miller and Hodge are optimistic there will be other versions of the human brain atlas completed in the next five years, as other groups wrap up similar projects. 

But there’s a possibility that we’ll never get the full picture. While Miller finds a half-decade timeframe reasonable, he says there’s always a chance science develops a new technology that could unearth something unexpected about the brain. “We can always do more,” he says.

This post has been updated.

The post New human brain atlas is the most detailed one we’ve seen yet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Female frogs appear to play dead to avoid mating https://www.popsci.com/environment/female-frog-mating-play-dead/ Thu, 12 Oct 2023 16:00:00 +0000 https://www.popsci.com/?p=579103
Two frogs mating in a body of water.
The behavior could also be a way to test a male frog's strength and endurance. Deposit Photos

Other animals tend to 'play possum' to avoid being eaten.

The post Female frogs appear to play dead to avoid mating appeared first on Popular Science.

]]>
Two frogs mating in a body of water.
The behavior could also be a way to test a male frog's strength and endurance. Deposit Photos

To avoid the amphibian pile-up that often comes with mating, some female frogs take drastic measures. According to research published October 11 in the journal Royal Society Open Science, female European common frogs will lay completely still and play dead to fend off potential mates. 

[Related: Check out some of the weirdest warty frogs in North America.]

In the study, a team from the Natural History Museum of Berlin in Germany placed a male frog in a box with one large female and one small female and recorded the mating behavior. They observed 54 instances of female frogs being clutched by the males and 83 percent of females tried rotating their body when gripped. About 48 percent of clasped females emitted “release calls” like squeaks and grunts and all of these vocal frogs rotated their bodies. 

Thirty-three percent of the frogs clasped by male expressed tonic immobility. This is when a frog stiffens its outstretched arms and legs to appear dead. The immobility tended to occur alongside both rotating and calling. Smaller females more frequently used all three tactics together than the bigger frogs. 

Interestingly, this unusual behavior had actually been seen centuries before. “I found a book written in 1758 by Rösel von Rosenhoff describing this behavior, which was never mentioned again,” study co-author Carolin Dittrich told The Guardian. “It was previously thought that females were unable to choose or defend themselves against this male coercion. Females in these dense breeding aggregations are not passive as previously thought.”

The team acknowledges that this behavior could also be a way to test a male’s strength and endurance, as those traits could boost their survival chances. They also point out that a larger sample size is needed to see if smaller females are more successful at escaping. 

This playing tactic is also used by other animals as a way to avoid being eaten.

The phrase “playing possum”  refers to a tactic deployed by the North American opossum found in the United States and Canada. When this marsupial is threatened by a predator, it will throw itself onto its back, bare its teeth, drool, and excrete a very bad smelling liquid out of its anal glands to get out of danger. 

North American wood ducks and colorful mallard ducks can immediately collapse when confronted with predators. In a 1975 experiment, 29 out of 50 different wild ducks played dead when they were exposed to captive red foxes. The ducks would also stay still long enough to be brought back to the fox’s den and wait until later to escape. The veteran foxes quickly learned that they needed to quickly deal a fatal injury to ducks that appeared dead.

[Related: Why some tiny frogs have tarantulas as bodyguards.]

Despite being apex predators, multiple species of sharks and rays also exhibit tonic immobility. Lemon sharks will turn onto their back and exhibit labored breathing and an occasional tremor when facing danger. Zebra sharks will also do this and will even stay immobile when being transported. 

Male nuptial gift-giving spiders will display a different death feigning behavior called thanatosis. It’s part of a courtship ritual that begins before mating with potentially cannibalistic female spiders. In a 2006 experiment, the males would “drop dead” when a female approached with interest. When entering thanatosis, the males would collapse and remain completely still, while retaining a gift of prey the male has already caught and wrapped in silk The male only cautiously begins to move when the female ate the gifts and initiated copulation.

The post Female frogs appear to play dead to avoid mating appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Titanium-fused bone tissue connects this bionic hand directly to a patient’s nerves https://www.popsci.com/technology/bionic-hand-phantom-pain/ Thu, 12 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=579098
Patient wearing a highly integrated bionic hand in between many others
The breakthrough bionic limb relies on osseointegration to attach to its wearer. Ortiz-Catalan et al., Sci. Rob., 2023

Unlike other prosthetics, a new model connects directly to a patient's limb via both bone and nerves.

The post Titanium-fused bone tissue connects this bionic hand directly to a patient’s nerves appeared first on Popular Science.

]]>
Patient wearing a highly integrated bionic hand in between many others
The breakthrough bionic limb relies on osseointegration to attach to its wearer. Ortiz-Catalan et al., Sci. Rob., 2023

Adjusting to prosthetic limbs isn’t as simple as merely finding one that fits your particular body type and needs. Physical control and accuracy are major issues despite proper attachment, and sometimes patients’ bodies reject even the most high-end options available. Such was repeatedly the case for a Swedish patient after losing her right arm in a farming accident over two decades ago. For years, the woman suffered from severe pain and stress issues, likening the sensation to “constantly [having] my hand in a meat grinder.”

Phantom pain is an unfortunately common affliction for amputees, and is believed to originate from nervous system signal confusions between the spinal cord and brain. Although a body part is amputated, the peripheral nerve endings remain connected to the brain, and can thus misread that information as pain.

[Related: We’re surprisingly good at surviving amputations.]

With a new, major breakthrough in prosthetics, however, her severe phantom pains are dramatically alleviated thanks to an artificial arm built on titanium-fused bone tissue alongside rearranged nerves and muscles. As detailed in a new study published via Science Robotics, the remarkable advancements could provide a potential blueprint for many other amputees to adopt such technology in the coming years.

The patient’s procedure started in 2018 when she volunteered to test a new kind of bionic arm designed by a multidisciplinary team of engineers and surgeons led by Max Ortiz Catalan, head of neural prosthetics research at Australia’s Bionics Institute and founder of the Center for Bionics and Pain Research. Using osseointegration, a process infusing titanium into bone tissue to provide a strong mechanical connection, the team was able to attach their prototype to the remaining portion of her right limb.

Accomplishing even this step proved especially difficult because of the need to precisely align the volunteer’s radius and ulna. The team also needed to account for the small amount of space available to house the system’s components. Meanwhile, the limb’s nerves and muscles needed rearrangement to better direct the patient’s neurological motor control information into the prosthetic attachment.

“By combining osseointegration with reconstructive surgery, implanted electrodes, and AI, we can restore human function in an unprecedented way,” Rickard Brånemark, an MIT research affiliate and associate professor at Gothenburg University who oversaw the surgery, said via an update from the Bionics Institute. “The below elbow amputation level has particular challenges, and the level of functionality achieved marks an important milestone for the field of advanced extremity reconstructions as a whole.”

The patient said her breakthrough prosthetic can be comfortably worn all day, is highly integrated with her body, and has even relieved her chronic pain. According to Catalan, this reduction can be attributed to the team’s “integrated surgical and engineering approach” that allows [her] to use “somewhat the same neural resources” as she once did for her biological hand.

“I have better control over my prosthesis, but above all, my pain has decreased,” the patient explained. “Today, I need much less medication.” 

The post Titanium-fused bone tissue connects this bionic hand directly to a patient’s nerves appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Fierce mama Grazer takes 2023’s Fat Bear Week crown https://www.popsci.com/environment/fat-bear-week-winner-2023/ Wed, 11 Oct 2023 12:30:00 +0000 https://www.popsci.com/?p=578638
Grazer looking chunky and getting ready for winter on September 14, 2023. The bear is in the river intensely staring for salmon.
Grazer looking chunky and getting ready for winter on September 14, 2023. NPS Photo/F. Jimenez

'It was the year of the sow.'

The post Fierce mama Grazer takes 2023’s Fat Bear Week crown appeared first on Popular Science.

]]>
Grazer looking chunky and getting ready for winter on September 14, 2023. The bear is in the river intensely staring for salmon.
Grazer looking chunky and getting ready for winter on September 14, 2023. NPS Photo/F. Jimenez

Bear enthusiasts of the world have spoken—128 Grazer was just crowned the winner of Fat Bear Week 2023. This is Grazer’s first time wearing the crown, and she beat out runner up 32 Chunk in the fierce Fat Bear Tuesday final by over 85,000 votes.

[Related: It’s Fat Bear season again! This is the best feed to keep up with these hairy giants.]

According to the National Park Service, Grazer is a large adult female, boasting a long straight muzzle, light brown summer fur, and blond ears. During late summer and fall, she is often one of the fattest bears to feed on the plentiful salmon in the Brooks River in Alaska’s Katmai National Park and Preserve.

She is also a particularly defensive mother bear who has raised two litters of cubs. Grazer is known for preemptively confronting and attacking much larger bears—even the large and dominant adult males—to keep her cubs safe. One of Katmai’s adult males named 151 Walker even avoids her, even though she did not have any cubs to protect this season. 

An Instagram post from Katmai National Park and Preserve of the Fat Bear Week 2023 bracket, with bear 128 Grazer in the center.

Grazer is the third female bear, or sow, to win the tournament. In 2019, 435 Holly was dubbed fattest bear and 409 Beadnose wore the prestigious crown in 2018. Beadnose is believed to have died in the five years since. 

“The girls did really well this year,” media ranger at Katmai National Park and Preserve Naomi Boak told The Washington Post. “It was the year of the sow.”

Like any competition, this year’s voting was packed with twists and turns. Four-time Fat Bear Week Champion 480 Otis was ousted on Friday October 6. Otis is the oldest and among the park’s most famous bears. This year, he arrived at Brooks River very skinny, but transformed into a thick bear. Otis was beaten by bear 901, a new mom and the 2022 runner up. 

On Saturday October 7, the 2022 winner bear 747 was defeated by Grazer, who went on to beat 901, Holly, and Chunk in the Final Four. 

[Related: How scientists try to weigh some of the fattest bears on Earth.]

First launched by the National Park Service in 2014 as Fat Bear Tuesday, Fat Bear Week is an annual tournament-style bracket competition where the public votes for their favorite chubby bear. Its goal is to celebrate the Brooks River brown bears at Katmai in southern Alaska and its remarkable ecosystem. It was expanded Fat Bear Week in 2015, following the first year’s success. In 2022, over one million votes were cast all around the world. 

At Katmai, bears are drawn to the large number of salmon readily available from late June through September. Salmon have long since been the lifeblood of the area, supporting Katmai’s people, bears and other animals. Fat bears exemplify the richness of this area, a wild region that is home to more brown bears than people along with the largest, healthiest runs of sockeye salmon left on the planet. The daily lives of the Brooks River bears can be followed via eight live-streaming cameras on explore.org from June through October. 

The winners, and all the bears, now get six months of restful solitude as winter approaches. 

The post Fierce mama Grazer takes 2023’s Fat Bear Week crown appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Sensitive to pain? It could be your Neanderthal gene variants. https://www.popsci.com/science/neanderthal-genetics-pain-sensitivity/ Tue, 10 Oct 2023 17:00:00 +0000 https://www.popsci.com/?p=578280
Human hand bones during an archaeological dig.
Scientists are still not sure if carrying these ancient genetic variants and greater sensitivity to pain was an evolutionary advantage. Deposit Photos

Studying them could lead to a greater understanding of chronic pain.

The post Sensitive to pain? It could be your Neanderthal gene variants. appeared first on Popular Science.

]]>
Human hand bones during an archaeological dig.
Scientists are still not sure if carrying these ancient genetic variants and greater sensitivity to pain was an evolutionary advantage. Deposit Photos

In the years since the Neanderthal genome was first sequenced, geneticists have been peering into the past to look for traces of this extinct group of humans within our genes. The presence of these ancient genes could make carriers more at risk for severe COVID-19, influence nose shape, and even make some people more sensitive to pain

[Related: Neanderthal genomes reveal family bonds from 54,000 years ago.]

A new study published October 10 in the journal Communications Biology found that those carrying three Neanderthal gene variants are actually more sensitive to pain from skin pricking after prior exposure to mustard oil. In this case, mustard oil acts as an agonist, or a substance that initiates a physiological response. Adding it to the skin causes a quick response by neurons called nociceptors that create a sense of pain. 

SCN9A is a key gene in the perception of pain that is located on chromosome 2. It is highly expressed nociceptors that are activated when a sharp point or something hot is applied to the body. The neurons encode proteins within the body’s sodium channel and alert the brain which leads to the perception of pain. Earlier research found three variations in the SCN9A gene–M932L, V991L, and D1908G–in sequenced Neanderthal genomes and reports of greater sensitivity to pain among the living humans who have all three of these variants. 

“It has been shown in previous studies that some rare mutations in this gene that stop the channel from working can cause insensitivity to pain,” study co-author and University of Oxford neuroscientist David Bennett tells PopSci. “We were, however, interested in these other mutations, which were shown to have an opposite effect of enhancing the activity of this channel, thus leading their carriers to be somewhat more sensitive than non-carriers.”

According to Andrés Ruiz-Linares, study co-author and University College London human geneticist, earlier studies show that the mutations are quite rare in the British populations, but they are very frequent in Latin American populations. 

“We thus realized that we had, in our hands, the perfect dataset to not only replicate their study but also go further and identify the pain modality that was at work here,” Ruiz-Linares tells PopSci

In the study, the team measured the pain thresholds of 1,963 individuals from Colombia in response to a range of stimuli. The D1908G variant was present in roughly 20 percent of chromosomes within this population. About 30 percent of chromosomes carrying this variant also carried the M932L and V991L variants. All three variants were associated with a lower pain threshold in response to skin pricking after the skin was exposed to mustard oil, but not in response to pressure or heat. Additionally, carrying all three of these variants was associated with greater pain sensitivity than carrying only one of them. 

[Related: Neanderthals were likely creating art 57,000 years ago.]

The team then analyzed the genomic region that houses SCN9A using genetic data from 5,971 individuals from Peru, Chile, Brazil, Colombia, and Mexico. They found that the three Neanderthal variants were more common in regions where the population had a higher proportion of Native American ancestry, such as the Peruvian population.

“They [the mutations] have a rather wide range in these countries, from 2 to 42 percent,” study co-author and University College London statistical geneticist Kaustubh Adhikari tells PopSci. “Up to 18 percent of their populations could carry two copies of the mutation. These are, however, gross estimations. We also know, from the previous study, that these mutations are pretty rare in European populations.”

The team believes that the Neanderthal variants may sensitize the sensory neurons by changing the threshold at which a nerve impulse is generated. The variants could also be more common in populations with higher proportions of Native American ancestry due to random chance as well as population bottlenecks that occurred during when the Americas were first colonized by Europeans

“Although Neanderthal intermixing with Europeans is now well-known in popular culture, their genetic contribution to other human groups, such as Native Americans in this case, is less talked about,” study co-author and population geneticist at the National Research Institute for Agriculture, Food and the Environment in France Pierre Faux tells PopSci. “In this study, we saw how important and relevant it is to study genetic backgrounds that are under-represented in medical cohorts.”

Since acute pain can play a role in moderating behavior and preventing further injury, the team is planning additional research to determine if carrying these variants and having greater sensitivity to pain was advantageous during human evolution. Understanding how these variants work could also help physicians understand and treat chronic pain.

“Genes are just one of many factors, including environment, past experience, and psychological factors, which influence pain,” says Bennet. 

The post Sensitive to pain? It could be your Neanderthal gene variants. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
New neon-yellow snail from the Florida Keys gets a happy hour-ready name https://www.popsci.com/environment/margarita-snail/ Tue, 10 Oct 2023 14:00:00 +0000 https://www.popsci.com/?p=578159
An underwater closeup of Cayo margarita (a new species) in the coral reef of the Florida Keys. Note the two long tentacles, used by the snail to spread the mucus net for feeding.
An underwater closeup of Cayo margarita (a new species) in the coral reef of the Florida Keys. Note the two long tentacles, used by the snail to spread the mucus net for feeding. Rüdiger Bieler

Wastin’ away again with a margarita snail.

The post New neon-yellow snail from the Florida Keys gets a happy hour-ready name appeared first on Popular Science.

]]>
An underwater closeup of Cayo margarita (a new species) in the coral reef of the Florida Keys. Note the two long tentacles, used by the snail to spread the mucus net for feeding.
An underwater closeup of Cayo margarita (a new species) in the coral reef of the Florida Keys. Note the two long tentacles, used by the snail to spread the mucus net for feeding. Rüdiger Bieler

A new marine snail that would make the late great Jimmy Buffet proud has been discovered in the Florida Keys. The lemon-colored snail is named Cayo margarita after the Spanish word for “small, low island” and the tropical drink Buffet sings about in one of his biggest hits. The new and real resident of the fictional Margaritaville is described in a study published October 9 in the journal PeerJ.

[Related: This cone snail’s deadly venom could hold the key to better pain meds.]

Marine smells are distantly related to the land-dwelling gastropods in gardens around the world. The margarita snails come from a group nicknamed worm snails, since they spend many of their lives living in one place. Worm snails also do not have a protective covering found in other snails called an operculum. This body part allows the snails to retreat further inside their shell and keep their bodies moist.

“Worm snails are just so different from pretty much any other regular snail,” study co-author Rüdiger Bieler tells PopSci. “These guys are sitting in the middle of the coral reef where everybody is out trying to eat them. And they’ve given up that protection and just advertise with their bright colors.”

Bieler is a marine biologist and curator of invertebrates at the Field Museum in Chicago who has spent 40 years studying the Western Atlantic’s invertebrates. Even after decades studying the region, these worm snails were hiding in plain sight during dive trips, largely because these snails are kind of the ultimate introverts.

Look closely. A margarita snail in the middle of a dead section of a large brain coral. CREDIT: R. Bieler.
Look closely. A margarita snail in the middle of a dead section of a large brain coral. CREDIT: R. Bieler.

Once juvenile worm snails find a spot to hunker down and they cement their shell to a hard surface never really move again. “Their shell continues to grow as an irregular tube around the snail’s body, and the animal hunts by laying out a mucus web to trap plankton and bits of detritus,” Bieler explains

Bieler and the rest of the international team of researchers came across the lemon-yellow snails in the Florida Keys National Marine Sanctuary and a similar lime-colored snail in Belize. Within the same species of snails, it is possible to get many different colors. There can also be color variations in a single population or even cluster of snails. Bieler believes that they may do this to confuse some of the coral reef fish that can see color so that they do not have a clear target. Some may use their hue as a warning color.  

The team initially believed that the lime-green and lemon-yellow snails were different species, but DNA sequencing revealed just how unique they are. This new yellow species belongs to the same family of marine snails as the invasive snail nicknamed the “Spider-Man” snail. This same team found these snails in 2017 on the Vandenberg shipwreck off the Florida Keys.

[Related: Invasive snails are chomping through Florida, and no one can stop them.]

The snails in this new Cayo genus also share a key trait in common with another worm snail genus called Thylacodes. The species Thylacodes bermudensis is found near Bermuda, and while only distantly related to their Floridaian and Belizean cousins, they have small colored heads and mucus that pop out of tubular shells. This might work as a deterrent to keep corals, anemones, and other reef fish from getting too close. The mucus has some nasty metabolites in it which might explain why these snails risk exposing their heads. 

The study and the new snails described in it help illuminate the stunning biodiversity of the world’s coral reefs, which are under serious threat due to climate change and the record warm ocean temperatures this summer

“These little snails are kind of beacons for biodiversity that need to be protected because many of them are dying out before we even get a chance to study them,” says Biler. 

It is also an important lesson in always looking right under your nose for discovery.

“I’ve been doing this for decades. We still find new species and previously unknown morphologies right under our feet,” says Biler. “This [discovery] was at snorkeling depth and in one of the most heavily touristed areas in the United States. When you look closely, there are still new things.”

The post New neon-yellow snail from the Florida Keys gets a happy hour-ready name appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
4 capybara facts you’ll love, and 1 you’d like to forget https://www.popsci.com/environment/capybara-facts/ Mon, 09 Oct 2023 22:00:00 +0000 https://www.popsci.com/?p=577276
A capybara standing on a riverbank. Capybaras are semi-aquatic rodents that can weigh up to 174 pounds.
Capybaras are semi-aquatic rodents that can weigh up to 174 pounds. Deposit Photos

It's the cabybara's world, we're just living in it.

The post 4 capybara facts you’ll love, and 1 you’d like to forget appeared first on Popular Science.

]]>
A capybara standing on a riverbank. Capybaras are semi-aquatic rodents that can weigh up to 174 pounds.
Capybaras are semi-aquatic rodents that can weigh up to 174 pounds. Deposit Photos

The internet has recently fallen in love with South America’s charismatic rodents called Capybaras. From catchy songs to memes, it’s hard not to see the chunky charmers in your feed these days. Here are some fun facts about these captivating creatures to inform your scrolling.

[Related: Capybara spent a month on the lam after escape from Toronto Zoo.]

Where can I see a capybara in the wild?

Capybaras are the largest rodent in the world can be found east of the Andes Mountains and the riverbanks in Central and South America from Panama to Argentina. Since they are semi-aquatic like beavers and hippos, capybaras typically live beside ponds, swamps, marshes, or wherever standing water is available. They are also called “water hogs” or “capys” and can even stay under water for more than five minutes to escape from predators like anacondas and jaguars. 

They have been known to encroach further into human territory as their habitat is dwindling. Since 2020, hundreds of capybaras have taken over Nordelta, a private and gated neighborhood outside of Buenos Aires. The rodents had always been around, but remained hidden. The lockdowns triggered by the COVID-19 pandemic enabled the furry capys to spread and flourish in the posh neighborhood’s parks. 

Multiple zoos in the United States, including the Cincinnati Zoo and Botanical Garden (also home to some famous hippos), Southwick’s Zoo in Massachusetts, and the Cape May County Park and Zoo in New Jersey, are home to a handful of adorable specimens as well. 

CREDIT: Cincinnati Zoo and Botanical Garden.

Do capybaras really eat their own poop?

Yes, among other things. They eat their poop for beneficial bacteria that helps their stomach break down the thick fiber from their other food sources such as reeds and grains, according to the San Diego Zoo

Like other rodents, capybaras have ever-growing front teeth. They use their sharp and long chompers to graze on grass and water plants. When fresh grasses and water plants dry up during the dry season, they eat squashes, melons, reeds, and grains. An adult can eat about six to eight pounds of grasses per day. 

How big are capys?

There are two known species of capybara: Hydrochoerus hydrochaeris and Hydrochoerus isthmius.  Of the two, H.hydrochaeris is the largest living rodent in the world. It can grow up to 4.3 feet long and weigh a whopping 174 pounds. H. isthmius is a bit smaller. It can grow to about 3 feet long and weigh closer to 62 pounds.

[Related: These prehistoric rodents were social butterflies.]

Can I own a capybara as a pet in the United States?

It depends what state you call home. They are currently legal with restrictions in some states including Texas, Pennsylvania, Nevada, Arizona, and Georgia. California and New York have more stringent rules, including that the animals can only be obtained by those with an approved scientific or educational reason. While ownership may be legal at the state, it may be illegal at the city level. 

Yahoo Finance estimates that the initial cost to buy a capy on the exotic animal market is about $1,000 per animal, while other estimates place the cost at $8,000. Vet bills can easily stretch between $600 to $1,000 each year?? and owners need to keep in mind the six to eight pounds of food that they can eat per day. Capybaras are also social animals, so owners need to be prepared to take in more than one for their pet to thrive. 

What are capys all over my feed?

Basically, capybaras are kind of the new Baby Shark. The song Capybara from Russian artist Сто-Личный Она-Нас went viral on TikTok earlier this year. Listen at your own risk, as it is a textbook earworm that will be stuck in your head for days.

Popular videos include a capybara sparring with a platypus and jumping into above ground pools. They are also the stars of pop culture memes, including one celebrating the billion dollar hit movie Barbie. 

A meme that reads "this Barbie is pulling up," with a photo of a capybara and the Barbie logo.
CREDIT: Capyverse via Instragram

They are also known for being some of the friendliest critters in the animal kingdom. They are very social and live together in herds of 10 to 20 animals. They spend time together cuddling, playing, socializing, and grooming one another. They have even been known to try to use alligators to hitch a ride

It also doesn’t hurt that they are really cute. In an era of doom scrolling, sometimes it’s just nice to look at their hippo-like eyes and ears as they look above the water. 

The post 4 capybara facts you’ll love, and 1 you’d like to forget appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A newly discovered sauropod dinosaur left behind some epic footprints https://www.popsci.com/science/garumbatitan-morellensis-dinosaur/ Fri, 06 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=577496
Evolution photo

Garumbatitan morellensis' vertebrae alone were nearly 3 feet wide.

The post A newly discovered sauropod dinosaur left behind some epic footprints appeared first on Popular Science.

]]>
Evolution photo

Meet Garumbatitan morellensis, a new species of large sauropod dinosaur. The Giganotosaurus relative called the present-day Iberian Peninsula home about 122 million years ago. The remains of this titan were discovered in Morella, Spain, and this discovery could help fill in some major evolutionary gaps. The findings were described in a study published September 28 in the journal Zoological Journal of the Linnean Society.

[Related: Cushy feet supported sauropods’ gigantic bodies.]

G. morellensis belongs to the sauropod group of dinosaurs, which includes some well-known favorites like Diplodocus and Brachiosaurus. Sauropods were four-legged Early Jurassic and Cretaceous Era dinos known for their long necks that could reach up to 49 feet long in some species and lengthy tails. G. morellensis is also a member of a subgroup of sauropods known as titanosaurs. These giants were the largest of an already big group and titanosaurs survived right up until the asteroid that wiped out the dinosaurs struck about 66 million years ago.

This new dinosaur’s remains were found and excavated in the Sant Antoni de la Vespa fossil-site in 2005 and 2008. This fossil deposit is home to one of the largest concentrations of sauropod dinosaur remains that date back to the Lower Cretaceous period in Europe (about 145 million to 66 million years ago). Scientists found the remains of a giant unidentified sauropod in Portugal in 2022 that could be Europe’s oldest known dinosaur fossil at 150 million-years-old. 

The team of paleontologists from Portugal and Spain found the remains of three G. morellensis individuals and one other sauropod. Their lucky find included a rare set of footprints. They also uncovered giant vertebrae, leg bones, and two near-complete sets of foot bones. 

An artist’s reconstruction of the life appearance of Garumbatitan morellensis. The dinosaur is green with a very long neck and tail, and stands near a waterhole.
An artist’s reconstruction of the life appearance of Garumbatitan morellensis. Grup Guix

“One of the individuals we found stands out for its large size, with vertebrae more than one meter wide [3.2 feet], and a femur that could reach two meters [6.5 feet] in length. We found two almost complete and articulated feet in this deposit, which is particularly rare in the geological record,” study co-author and University of Lisbon paleontologist Pedro Mocho said in a statement

G. morellensis was probably close to an average-size titanosaur and could have been near 94 feet long. Its leg shape and foot bones suggest that it was one of the more primitive sauropods from a subgroup called Somphospondyli, according to the authors. Somphospondylan fossils have been found on every present-day continent, but paleontologists are not sure where they originated. This discovery of such an early specimen in Spain points to Europe as a possible origin point for this subgroup, but more evidence is needed.  

[Related: Europe’s largest dinosaur skeleton may have been hiding in a Portuguese backyard.]

This discovery also highlights how complex the evolutionary history of sauropods in the Iberian Peninsula and the rest of Europe is. Species related to these lineages have been found in Asia, North America, and possibly Africa. This points to a potentially long period of dinosaur dispersal within continents and this fossil deposit might fill in some major gaps of evolutionary history. 

“The future restoration of all fossil materials found in this deposit will add important information to understand the initial evolution of this group of sauropods that dominated dinosaur faunas during the last million years of the Mesozoic era,” study co-author and Universidad Nacional de Educación a Distancia in Madrid paleontologist Francisco Ortega said in a statement.

The post A newly discovered sauropod dinosaur left behind some epic footprints appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Do the ancient human footprints at White Sands date back to the last ice age? https://www.popsci.com/science/white-sands-human-footprints-new-analysis/ Thu, 05 Oct 2023 19:30:00 +0000 https://www.popsci.com/?p=577342
White Sands NPS staff excavating fossilized human footprints from lakebed
The oldest human footprints found in White Sands National Park were initially excavated in 2009. NPS

New tests on the millennia-old footprints confirm their age. But debate around the first humans to live in the Americas will continue.

The post Do the ancient human footprints at White Sands date back to the last ice age? appeared first on Popular Science.

]]>
White Sands NPS staff excavating fossilized human footprints from lakebed
The oldest human footprints found in White Sands National Park were initially excavated in 2009. NPS

In 2006, a cluster of mysterious dark spots on a lakebed of White Sands National Park in New Mexico caught the attention of archaeologists. The shapes stroked their curiosity until they eventually excavated the site three years later. Waiting for them was one of the rarest and soon-to-be controversial discoveries in history—a set of fossilized human footprints

The preserved markings were found on the shore of a lake that existed during the most recent ice age, and could be one of the earliest signs of biped migration to North America. Some experts claim they are the steps of the Clovis people, the continent’s first human inhabitants and the ancestors for most Native Americans. The Clovis are thought to have made the journey to North America 13,000 to 13,500 years ago using a land bridge that connected Asia to Alaska. From there, they continued to move as far down south as Central and South America. 

Archaeologists speculate there was a short window of time when our species could have crossed over the land bridge because sea levels dropped low enough to expose it. A scientific simulation last December found the land bridge appeared 35,700 years ago near the end of the last ice age (or the last Glacial Maximum). The likelihood of Homo sapiens appearing in North America before then was unthinkable: The frozen terrain would have made it impossible for them to hunt, and any food supplies they packed would have eventually run out. 

The White Sands footprints walk us through a different origin story. A 2021 study had dated them to 21,000 to 23,000 years ago, and in a new report published today in the journal Science, the same team of experts confirmed the hotly debated estimates with two new tests. Not only does this mean humans were here during the last ice age, but it also could change what we know about the first people that came to North America.

“This was groundbreaking to the archaeologic community, and it was also a tough pill to swallow,” says Kathleen Springer, a research geologist for the United States Geological Survey (USGS) who helped analyze the fossilized steps. “Having 23- to 21,000-year-old footprints is much earlier than the prevailing paradigm of Clovis or pre-Clovis that are known in this part of North America.”

Ancient human footprint at White Sands National Park
One of the footprints in question at White Sands National Park. USGS

The finding initially received some pushback. When the results were first revealed in 2021, concerned archaeologists wrote comments and papers challenging the results, citing the need for better evidence. More specifically, they criticized the study method and the decision to use radiocarbon dating on the seeds of an aquatic plant that was excavated from the same site. 

Part of the debate came down to an isotope that’s often used in archaeological work. Carbon-14 forms in the air and is introduced to photosynthetic plants and the animals that eat them. When flora and fauna are alive, they have the same amount of carbon-14 as the Earth’s atmosphere; when they die, it decays in their remains. Scientists can then measure how much of the isotope is left and use that metric to calculate an organism’s approximate age. But as some experts have pointed out, aquatic plants like the ones sampled at White Sands can get carbon from the water they live in, which can skew the measurements and make a specimen seem older than it really is.

“It’s called the hard water effect, and it’s a really well-known problem with radiocarbon dating,” explains Jeffrey Pigati, a USGS research geologist who co-authored both studies with Springer. He says the general argument with the first paper is that there were large hard-water effects that made them overestimate the age of the footsteps when they should have been around 15,000 or 17,000 years old.

The COVID pandemic delayed many of the follow-up experiments Pigati and Springer wanted to complete when investigating the site in 2020. Three years later, they finally did with two new methods that corroborate their original estimate of the footprints’ age: radiocarbon dating of pollen and luminescence dating.

Researchers digging in the lakebed with the White Sands human footprint archaeological site
Researchers from the US Geological Survey and National Park Service sampled pollen grains and quartz crystals from trenches in the White Sands lakebed. USGS

To avoid heavy-water effects, the team extracted pollen grains from the same sediment as the White Sands footprints. According to Pigati, this is a time-consuming and laborious process because it involves breaking down rock into one cubic centimeter of material and separating pollen from other organic material before measuring carbon-14 levels. Additionally, pollen is extremely light—experts need to sample thousands of grains to meet the minimum mass requirement for a single radiocarbon measurement. In total, they successfully isolated 75,000 pollen grains. When the they compared the measurements to ones from the seeds of the aquatic plant, the ages matched.

The second technique was optically stimulated luminescence (OSL) dating. Unlike radiocarbon dating, OSL dating is based on the buildup of luminescence properties in quartz crystals over time; in some rare cases, it can date sediments as far back as 400,000 years ago. The USGS team dated three different mineral samples from the same area where the footprint was discovered and calculated ages that were similar to the ones measured in the seeds.

“Because of how paradigm shifting this result is, it needed to be ironclad and that was the motivation all along to provide multiple lines of evidence,” says Springer. When asked about Indigenous representation on the recent analysis, she notes that it involved 32 Native American tribes and pueblos and two archaeologists, Edward Jolie from the University of Arizona and Joe Watkins of the National Park Service.

The additional data appears to have quelled many of the concerns initially raised by scientists. In a Science commentary also published today, Bente Philippsen, an archaeologist at the Norwegian University of Science and Technology, says the newly presented data “strongly indicate human presence in the Americas around the [Last Glacial maximum].”

Still, this does not mean we have a complete picture of our species’ migration to North America. Paulette Steeves, an archaeologist and author of The Indigenous Paleolithic of the Western Hemisphere, who was not involved in the White Sands research, says there are archaeological sites in both North and South America that date to as early as 11,000 to 200,000 years ago. While she argues it’s not the oldest sign of human habitation in the Americas and may not be proof of the first Indigenous group, “the White Sands footprints site is a great addition to the record of early people in the Western Hemisphere.”

The footprints are just one piece of the puzzle. Archaeologists still don’t know exactly how people lived in the middle of an ice age and weathered harsh climate. Future projects at White Sands could include tracking the footprints to a campsite or further scouring the area for stone tools that could give some insight into their survival. “Every day we’re working out there is amazing because you never know what is going to be discovered,” Pigati says. “This is all a part of science in action.”

The post Do the ancient human footprints at White Sands date back to the last ice age? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A new noninvasive patch could monitor a vital hormone https://www.popsci.com/technology/sweat-sensor-hormones/ Thu, 05 Oct 2023 19:00:00 +0000 https://www.popsci.com/?p=577281
Sweat sensor worn like a ring on finger
The thin sensor measures estradiol, the most potent form of estrogen. Caltech

Estradiol is usually only measured via blood and urine samples, but this new patch only needs a little sweat.

The post A new noninvasive patch could monitor a vital hormone appeared first on Popular Science.

]]>
Sweat sensor worn like a ring on finger
The thin sensor measures estradiol, the most potent form of estrogen. Caltech

Wearable sensors can already monitor a variety of important health characteristics. But they are still far short when it comes to detecting hormonal levels, particularly for women. A new device designed by researchers at Caltech, however, is specifically tailored to measure one of women’s most vital and influential hormones. According to the team’s study, recently published in Nature Nanotechnology, their new wearable sensor can detect and assess users’ estradiol levels by just analyzing sweat droplets.

Estradiol, the most potent form of estrogen, is a crucial component in women’s health. Not only is it necessary in regulating reproductive cycles and ovulation, but this hormone’s levels are directly correlated to issues ranging from depression, to osteoporosis, to even heart disease. Currently, estradiol monitoring requires blood or urine samples collected either in-clinic or at-home. In contrast, Caltech’s new sensor, created by assistant professor of medical engineering Wei Gao, only needs miniscule amounts of sweat collected via extremely small automatic valves within its microfluidic system.

[Related: This organ-failure detector is thinner than a human hair.]

The sensor’s reliance on sweat to measure estradiol isn’t only impressive due to its non-invasive nature; according to Caltech’s announcement, the hormone is about 50 times less concentrated in sweat than in blood.

The wearable’s monitoring system utilizes aptamers—short, single-strand DNA capable of binding to target molecules like artificial antibodies. Gao’s team first attached aptamers to a surface imbued with inkjet-printed gold nanoparticles. The aptamers then could bind with targeted molecules—in this case, estradiol. Once binded, the molecule gets recaptured by other titanium carbide-coated gold nanoparticles known as “MXenes.” The resultant electrical signal can be wirelessly measured and correlated to estradiol levels via a simple-to-use smartphone app.

To actually collect the sweat samples, the sensor uses tiny channels controlled by automatic valves to allow only fixed amounts of fluid into the sensor. To take patients’ sweat composition differences into consideration, the device also consistently calibrates via information collected on salt levels, skin temperature, and sweat pH.

This isn’t Gao’s first sweat sensor, either—previous variants also could detect the stress hormone cortisol, COVID-19, as well as a biomarker that indicates inflammation.

“People often ask[ed] me if I could make the same kind of sweat sensor for female hormones, because we know how much those hormones impact women’s health,” Gao said via Caltech’s announcement. With further optimization, the new estradiol sensor could help users attempting to naturally or in vitro conceive children, as well as aid those necessitating hormone replacement therapies. According to Gao, the team also intends to expand the range of female hormones they can detect, including another ovulation-related variant, progesterone.

The post A new noninvasive patch could monitor a vital hormone appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
An ‘electronic tongue’ could help robots taste food like humans https://www.popsci.com/technology/electronic-tongue-ai-robot/ Wed, 04 Oct 2023 20:00:00 +0000 https://www.popsci.com/?p=577156
Electronic artificial tongue sensor
The sensor could one day help AI develop their own versions of taste palates. Das Research Lab/Penn State

A combination of ultra-thin sensors marks the first step in machines being able to mimic our tastes.

The post An ‘electronic tongue’ could help robots taste food like humans appeared first on Popular Science.

]]>
Electronic artificial tongue sensor
The sensor could one day help AI develop their own versions of taste palates. Das Research Lab/Penn State

AI programs can already respond to sensory stimulations like touch, sight, smell, and sound—so why not taste? Engineering researchers at Penn State hope to one day accomplish just that, in the process designing an “electronic tongue” capable of detecting gas and chemical molecules with components that are only a few atoms thick. Although not capable of “craving” a late-night snack just yet, the team is hopeful their new design could one day pair with robots to help create AI-influenced diets, curate restaurant menus, and even train people to broaden their own palates.

Unfortunately, human eating habits aren’t based solely on what we nutritionally require; they are also determined by flavor preferences. This comes in handy when our taste buds tell our brains to avoid foul-tasting, potentially poisonous foods, but it also is the reason you sometimes can’t stop yourself from grabbing that extra donut or slice of cake. This push-and-pull requires a certain amount of psychological cognition and development—something robots currently lack.

[Related: A new artificial skin could be more sensitive than the real thing]

“Human behavior is easy to observe but difficult to measure. and that makes it difficult to replicate in a robot and make it emotionally intelligent. There is no real way right now to do that,” 

Saptarshi Das, an associate professor of engineering science and mechanics, said in an October 4 statement. Das is a corresponding author of the team’s findings, which were published last month in the journal Nature Communications, and helped design the robotic system capable of “tasting” molecules.

To create their flat, square “electronic gustatory complex,” the team combined chemitransistors—graphene-based sensors that detect gas and chemical molecules—with molybdenum disulfide memtransistors capable of simulating neurons. The two components worked in tandem, capitalizing on their respective strengths to simulate the ability to “taste” molecular inputs.

“Graphene is an excellent chemical sensor, [but] it is not great for circuitry and logic, which is needed to mimic the brain circuit,” said Andrew Pannone, an engineering science and mechanics grad student and study co-author, in a press release this week. “For that reason, we used molybdenum disulfide… By combining these nanomaterials, we have taken the strengths from each of them to create the circuit that mimics the gustatory system.”

When analyzing salt, for example, the electronic tongue detected the presence of sodium ions, thereby “tasting” the sodium chloride input. The design is reportedly flexible enough to apply to all five major taste profiles: salty, sour, bitter, sweet, and umami. Hypothetically, researchers could arrange similar graphene device arrays that mirror the approximately 10,000 different taste receptors located on a human tongue.

[Related: How to enhance your senses of smell and taste]

“The example I think of is people who train their tongue and become a wine taster. Perhaps in the future we can have an AI system that you can train to be an even better wine taster,” Das said in the statement.

The post An ‘electronic tongue’ could help robots taste food like humans appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mammals may use same-sex sexual behavior for conflict resolution, bonding, and more https://www.popsci.com/environment/mammals-same-sex-behavior-evolution/ Wed, 04 Oct 2023 16:45:00 +0000 https://www.popsci.com/?p=577090
Two chimpanzees share a meal. A new study found that same-sex sexual behavior helps establish and maintain positive social relationships in animals including chimpanzees, bighorn sheep, lions, and wolves.
A new study found that same-sex sexual behavior helps establish and maintain positive social relationships in animals including chimpanzees, bighorn sheep, lions, and wolves. Deposit Photos

It's been observed in at least 51 species of non-human primates.

The post Mammals may use same-sex sexual behavior for conflict resolution, bonding, and more appeared first on Popular Science.

]]>
Two chimpanzees share a meal. A new study found that same-sex sexual behavior helps establish and maintain positive social relationships in animals including chimpanzees, bighorn sheep, lions, and wolves.
A new study found that same-sex sexual behavior helps establish and maintain positive social relationships in animals including chimpanzees, bighorn sheep, lions, and wolves. Deposit Photos

Over 1,500 animal species, from bonobos to sea urchins to penguins are known to engage same-sex sexual behavior. Still, scientists don’t understand exactly how it came to be or why it happens. While some say the behavior might have existed since the animal kingdom first arose more than half a billion years ago, it may have actually evolved repeatedly in mammals. A study published October 3 in the journal Nature Communications suggests that the behavior possibly plays an adaptive role in social bonding and reducing conflict, and evolved multiple times.

[Related: A massive study confirms no one ‘gay gene’ controls sexual preference.]

The behavior is particularly prevalent in nonhuman primates. It has been observed in at least 51 species from small lemurs up to bigger apes. For one population of male macaques, same-sex sexual behavior may even be a common feature of reproduction and is related to establishing dominance within groups, handling a shortage of different-sex partners, or even reducing tension following aggressive behavior. 

In this new study, the team from institutions in Spain surveyed the available scientific literature to create a database of records of same-sex sexual behavior in mammals. They traced the behavior’s evolution across mammals and tested for any evolutionary relationships with other behaviors. 

The team found that same-sex sexual behavior is widespread across mammal species, occurs in similar frequency in both males and females, and likely has multiple independent origin points. This analysis found that the behavior helps establish and maintain positive social relationships in animals including chimpanzees, bighorn sheep, lions, and wolves.

“It may contribute to establishing and maintaining positive social relationships,” study co-author José Gómez told The New York Times. “With the current data available, it seems that it has evolved multiple times.” Gómez is an evolutionary biologist at the Experimental Station of Arid Zones in Almería, Spain. 

Importantly, they caution that the study should not be used to explain the evolution of sexual orientation in humans. This research focused on same-sex sexual behavior defined as short-term courtship or mating interactions, instead of a more permanent sexual preference. 

Additionally, male same-sex sexual behavior was likely evolved in species with high rates of male adulticide–-when adult animals kill other adults. The team believes that this suggests the behavior may be an adaptation meant to mitigate the risks of violent conflict between males.

Harvard University primatologist Christine Webb, who did not participate in the study, told The Washington Post that the findings add to other research and widen the scope of what it means for a behavior to be considered adaptive.

[Related: Same-sex mounting in male macaques can help them reproduce more successfully.]

“This general question of evolutionary function—that behavior must aid in survival and reproduction—what this paper is arguing is that reaffirming social bonds, resolving conflicts, managing social tensions, to the extent that same-sex sexual behavior preserves those functions—it’s also adaptive,” Webb said. 

Webb also added that it makes sense that other animals would have sex for a variety of reasons the way that humans do.

The authors caution that these associations could also be driven by other evolutionary factors. Same-sex sexual behavior has also only been carefully studied in a minority of mammal species, so our understanding of the evolution of same-sex sexual behavior may continue to change as more mammalian species are studied.

The post Mammals may use same-sex sexual behavior for conflict resolution, bonding, and more appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How we can help the most endangered class of animals survive climate change https://www.popsci.com/environment/amphibians-climate-change-conservation/ Wed, 04 Oct 2023 15:00:00 +0000 https://www.popsci.com/?p=577023
The Morona-Santiago stubfoot toad (Atelopus halihelos) in Ecuador is listed as critically endangered.
The Morona-Santiago stubfoot toad (Atelopus halihelos) in Ecuador is listed as critically endangered. Jaime Culebras/Photo Wildlife Tours

Two out of five amphibians are currently threatened with extinction.

The post How we can help the most endangered class of animals survive climate change appeared first on Popular Science.

]]>
The Morona-Santiago stubfoot toad (Atelopus halihelos) in Ecuador is listed as critically endangered.
The Morona-Santiago stubfoot toad (Atelopus halihelos) in Ecuador is listed as critically endangered. Jaime Culebras/Photo Wildlife Tours

Earth’s amphibians are in serious trouble, but there is still time to save this unique class of animals. A study published October 4 in the journal Nature finds that two out of five amphibians are threatened with extinction and they continue to be the most threatened class of vertebrates. However, the new research also found that since 1980, the extinction risk of 63 species has been reduced due to conservation interventions.

[Related: Why you can’t put a price on biodiversity.]

“This proves that conservation works and it’s not all bad news,” Jennifer Luedtke, a study co-author and the manager of IUCN Red List Assessments at conservation organization Re:wild, said during a press conference. “We found that habitat protection alone is not sufficient. We need to mitigate the threats of disease and climate change.”

A check-up for amphibians

The findings are part of Global Amphibian Assessment II, an international series of conservation analyses based on evaluations of the 8,011 amphibian species listed on the IUCN Red List. The first Global Amphibian Assessment was published in 2004 and found that amphibians are Earth’s most threatened class of vertebrates. This second report confirms that the smooth-skinned animals are still more threatened than birds or mammals.

In the study, the team found that 118 species have been driven to extinction between 2004 and 2022. About 40 percent of the species studied are still categorized as threatened. This study also covers about 94 percent of the known amphibian species in 2022. According to Luedtke, about 155 new amphibian species are discovered every year, so there will likely be more species to add to the next Global Amphibian Assessment. 

Climate change and associated habitat loss are the primary driver of these declines. The team estimates that current and projected climate change effects are responsible for 39 percent of status deteriorations since 2004. Habitat loss has affected roughly 37 percent of species in the same period. 

Why amphibians are so vulnerable to climate change

Amphibians’ unique skin puts them in more danger in the face of a changing planet, since they use their skin to breathe. Increased frequency and intensity of storms, floods, droughts, changes in moisture levels and temperature, and sea level rise can all affect their very important breathing sites.

“They don’t have any protection in their skin like feathers, hair, or scales. They have a high tendency to lose water and heat through their skin,” Patricia Burrowes, a study co-author and herpetologist formerly with the University of Puerto Rico, said during a press conference. “The majority of frogs are nocturnal, and if it’s very hot, they will not come out because they will have lost so much water even in their retreat sites that they don’t have the energy to go out to feed. They won’t grow and won’t have energy to reproduce. And that can have demographic impacts.”

[Related: Hellbender salamanders may look scary, but the real fright is extinction.]

Extinctions have continued to increase with 37 documented in 2022. By comparison 23 species were reported extinct by 1980 and 33 in 2004. According to the report, the most recent species to go extinct were the frogs Atelopus chiriquiensis from Costa Rica and western Panama and Taudactylus acutirostris from Australia.

“Amphibians are essential parts of the ecosystem in a variety of ways, one of them being their role in the food web,” Kelsey Neam, study co-author and Re:wild’s Species Priorities and Metrics Coordinator, said during a press conference. “Amphibians are prey for many species and without amphibians, those animals lose a major source of their food and they are preying upon other animals like insects and other invertebrates. Without them to fulfill that niche, we will see a collapse of the food web.”

Amphibian pandemics

The most heavily affected amphibians were salamanders and newts, with three out of five salamander species at risk for extinction. While habitat loss is also the primary threat to salamanders, they are also particularly vulnerable to a disease called chytridiomycosis. It is caused by a fungal pathogen caused by the chytrid fungus that disrupts amphibian’s skin and physiological functions. When infected, amphibians can’t rehydrate properly, which creates an electrolyte imbalance that causes fatal heart attacks.

The Hickory Nut Gorge green salamander (Aneides caryaensis) is found in North Carolina, and is listed as critically endangered.
The Hickory Nut Gorge green salamander (Aneides caryaensis) is found in North Carolina, and is listed as critically endangered. CREDIT: Todd W. Pierson

“Droughts exacerbate the infection intensity,” said Burrowes. “When the frogs have the potential to present some kind of defense mechanism, that defense mechanism is monitored by changes in precipitation and temperature.”

North America is home to the world’s most biodiverse community of salamanders, including a group of lungless salamanders in the Appalachian Mountains. This has conservationists concerned about what would happen if another deadly fungal disease called Batrachochytrium salamandrivorans, or B.sal, arrives in the Americas from Asia or Europe.

‘We know what to do’

The report highlights that the time to help these critical animals is now. The authors point to the Kunming-Montreal Global Biodiversity Framework adopted by 190+ signatory countries at the United Nations Biodiversity Conference in December 2022. The signing nations committed to halting all human induced extinctions, reversing and reducing the extinction risk of species tenfold, and to recovering populations to a healthy level.

“We know what to do. It’s time to really commit the resources to actually achieving the change that we say we want,” said Luedtke. “Amphibians will be the better for it and so will we.”

The post How we can help the most endangered class of animals survive climate change appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
No two parakeets sound exactly the same https://www.popsci.com/environment/parakeet-voice-print/ Tue, 03 Oct 2023 23:15:00 +0000 https://www.popsci.com/?p=576816
A green monk parakeet standing in dirt. Parrots could have a unique tone of voice just like humans do.
Monk parakeets could have a unique tone of voice just like humans do. Deposit Photos

The unique 'voice prints' could help the chatty birds pick one another out in a flock, according to new research.

The post No two parakeets sound exactly the same appeared first on Popular Science.

]]>
A green monk parakeet standing in dirt. Parrots could have a unique tone of voice just like humans do.
Monk parakeets could have a unique tone of voice just like humans do. Deposit Photos

Parrots are the chatterboxes of the animal kingdom. These famously social birds can learn new sounds throughout their lives and even produce calls that can be individually recognized by other members of their flock. A new study of monk parakeets found that individual birds have a unique tone of voice similar to humans called a “voice print.” The findings are described in a study published October 3 in the journal Royal Society Open Science.

[Related: The next frontier in saving the world’s heaviest parrots: genome sequencing.]

“It makes sense for monk parakeets to have an underlying voice print,” Simeon Smeele, a co-author of the study and biologist studying parrot social and vocal complexity at the Max Planck Institute of Animal Behavior, said in a statement. “It’s an elegant solution for a bird that dynamically changes its calls but still needs to be known in a very noisy flock.”

In humans, our voice print leaves a unique signature in the tone of our voice across every word we say. These voice prints remain even though humans have a very complex and flexible vocal repertoire. Other social animals also use similar cues to recognize one another. Individual dolphins, bats, and birds have a “signature call” that makes them identifiable to other members of their groups. However, signature calls encode identity in only one call type, and there hasn’t been much evidence that suggests animals have unique signatures that last throughout their entire repertoire of calls. 

Parrots use their tongue and mouth to modulate calls similar to the way humans speak. According to Smeele, “their grunts and shrieks sound much more human than a songbird’s clean whistle.” 

Parrots also live in large groups with fluid membership where multiple birds vocalize at the same time. Members need a way to keep track of which individual is making what sound. The question became if the right physical anatomy coupled with the need to navigate complex social lives, helped parrots evolve a voice print. 

In the study, Smeele and his team traveled to Barcelona, Spain—home to the largest population of individually marked parrots in the wild. The parakeets are considered an invasive species and they swarm Barcelona’s parks in flocks with hundreds of members. The Museu de Ciències Naturals de Barcelona has been marking the parakeets for 20 years and have individually identified 3,000 birds.

The team used microphones to record the calls of hundreds of individuals and collected over 5,000 vocalizations in total. They also re-recorded the same individuals over a period of two years, which revealed the stability of the calls over time.

Using a set of computer models, they detected how recognizable individual birds were within each of the five main call types given by this species (contact, tja, trrup, alarm, and growl). They found high variability in the “contact call” that birds use to broadcast their identity. According to the team, this overturned a long-held assumption that contact calls contain a stable individual signal. The new findings suggested that the parakeets are actually using something else for individual recognition.

[Related: These clever cockatoos carry around toolkits to get to food faster.]

To investigate if voice prints were at play, the team used a machine learning model widely used in human voice recognition. The model detects the identity of the speaker using the quality, or timbre, of their voice. The team trained the model to recognize calls of individual birds that were categorized as “tonal” in sound. They then tested to see if the model could detect the same individual from a separate set of calls that were classified as “growling” in sound. The model was able to identify the individual parrots three times better than expected, providing evidence that monk parakeets do actually have a recognizable, individual voice print. 

While exciting, the authors caution that this evidence is still preliminary. Future experiments and analyses could use the parrot tagging work from the team in Barcelona. The GPS devices could help determine how much individuals overlap in their roaming areas.

“This can provide insight into the species’ remarkable ability to discriminate between calls from different individuals,” study co-author and ecologist from Museu de Ciències Naturals de Barcelona Juan Carlos Senar said in a statement.

The post No two parakeets sound exactly the same appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
4 reasons dinosaurs never really ruled the Earth https://www.popsci.com/science/age-of-the-dinosaurs-facts/ Tue, 03 Oct 2023 17:00:00 +0000 https://www.popsci.com/?p=576210
T. rex model, T. rex skull, and Triceratops skull at dinosaur display in the Museum of Natural History in Vienna
(Clockwise from top) A T. rex model, T. rex skull, and Triceratops skull on display at the Museum of Natural History in Vienna, Austria. DepositPhotos

The 'terrible lizards' can reign supreme in the movies, but there's something seriously wrong about the way we've hyped up their history.

The post 4 reasons dinosaurs never really ruled the Earth appeared first on Popular Science.

]]>
T. rex model, T. rex skull, and Triceratops skull at dinosaur display in the Museum of Natural History in Vienna
(Clockwise from top) A T. rex model, T. rex skull, and Triceratops skull on display at the Museum of Natural History in Vienna, Austria. DepositPhotos

We all know the line: For more than 150 million years, dinosaurs ruled the Earth. We imagine bloodthirsty tyrannosaurs ripping into screaming duckbills, gigantic sauropods shaking the ground with their thunderous footfalls, and spiky stegosaurs swinging their tails in a reign of reptiles so magnificent, it took the unexpected strike of a six-mile-wide asteroid to end it. The ensuing catastrophe handed the world to the mammals, our ancestors and relatives, so that 66 million years later we can claim to have taken over what the terrible lizards left behind. It’s a dramatic retelling of history that is fundamentally wrong on several counts. Let’s talk about some of the worst rumors and what really happened in the so-called “Age of Dinosaurs.”

Myth: Dinosaurs dominated the planet from their origin.

Fact: Dinosaurs started as cute pipsqueaks.

The oldest dinosaurs we know about are around 235 million years old, from the middle part of the Triassic Period. Those reptiles didn’t rule anything. From recent finds in Africa, South America, and Europe, we know that they were no bigger than a medium-sized dog and were lanky, omnivorous creatures that munched on leaves and beetles. Ancient relatives of crocodiles, by contrast, were much more abundant and diverse. Among the Triassic crocodile cousins were sharp-toothed carnivores that chased after large prey on two legs, “armadillodiles” covered in bony scutes and spikes, and beaked, almost ostrich-like creatures that gobbled up ferns.

Even as early dinosaurs began to evolve into the main lineages that would thrive during the rest of the Mesozoic, most were small and rare compared to the crocodile cousins. The first big herbivorous dinosaurs, which reached about 27 feet in length, didn’t evolve until near the end of the Triassic, around 214 million years ago. But everything changed at the end of the Triassic. Intense volcanic eruptions in the middle of Pangaea altered the global climate; the gases released into the air caused the world to swing between hot and cold phases. By then, dinosaurs had evolved warm-blooded metabolisms and insulating coats of feathers, leaving them relatively unfazed through the crisis, while many other forms of reptiles perished. Had this mass extinction not transpired, we might have had more of an “Age of Crocodiles”—or at least a very different history with a much broader cast of reptilian characters. The only reason the so-called Age of Dinosaurs came to be is because they got lucky in the face of global extinction.

Prehistoric predators fighting underwater. Illustration.
The biggest predators in the Cretaceous oceans were non-dinosaur reptiles and sharks. De Agostini via Getty Images

Myth: Dinosaurs spanned the entire planet.

Fact: Dinosaurs never evolved to live at sea.

It’s strange to talk about dinosaurs “dominating” an ocean world. While sea levels have risen and fallen over time, the seas make up about 71 percent of Earth’s surface and contain more than 330 million cubic miles of water. The claim that dinosaurs, as diverse as they were, were the dominant form of life on Earth only makes sense if we ignore that three-quarters of our planet is ocean.

Even though some dinosaurs swam, leaving scratches and swim tracks in ancient shallows, none have ever evolved to live their entire lives in the oceans. Even penguins—living dinosaurs—have not evolved the ability to remain at sea like many marine mammals have and must return to land to nest. If we were to emphasize prehistoric oceans, then there were marine reptiles of various shapes and sizes ruling over the watery kingdom. Fish-shaped ichthyosaurs, long-necked and four-flippered plesiosaurs, giant Komodo dragon relatives called mosasaurs, and many more non-dinosaur reptiles thrived in the seas for millions of years, many feeding on the even more abundant coil-shelled cephalopods called ammonites.

Of course, these ecosystems were built on a foundation of plankton. Without disc-shaped algae called coccoliths, the rest of the charismatic swimmers of the Triassic, Jurassic, and Cretaceous wouldn’t have thrived. It’s the abundant, small forms of life that let charismatic creatures like marine reptiles prosper—a further reminder that the animals that impress us on land or sea wouldn’t exist without various tiny organisms that set the foundations of food webs. What we might see as dominance, in any ecosystem, is really a consequence of many relationships and interactions that often go unnoticed.

Two mesonyx, a prehistoric mammal species, standing near a dead animal. Illustration.
Mammals flourished during and after the time of the dinosaurs. The wolf-life Mesonyx emerged in the Eocene, not long after the dinosaurs’ demise. De Agostini via Getty Images

Myth: Dinosaurs suppressed the evolution of mammals.

Fact: Mammals thrived throughout the Age of Dinosaurs.

The classic example of dinosaur dominance is a twitchy little mammal chasing an insect through the Cretaceous night. Dinosaurs would gobble up any beast that got too big or was foolish enough to wander out in the daylight, the argument went, so mammals evolved to be small and nocturnal until the asteroid allowed our ancestors and relatives to emerge from the shadows. The small size and insect-hunting adaptations of some Mesozoic mammals were taken as indicators that mammals were constrained by the success of the dinosaurs, preventing them from becoming larger or opening new niches.

In the past 20 years, however, paleontologists have rewritten the classic story to show that mammals and their relatives thrived alongside the dinosaurs. Throughout the Mesozoic there were furry beasts that swam, dug, glided between the trees, and even ate little dinosaurs. Ancient equivalents of squirrels, raccoons, otters, beavers, sugar gliders, aardvarks, and more evolved through the Jurassic and Cretaceous, including early primates that scampered through the trees over the heads of T. rexes. While it’s true that all the Mesozoic mammals we presently know of were small—the largest was about the size of an American badger— researchers have realized that the way our ancient ancestors interacted with each other was much more important to shaping their evolution than the dinosaurs were. In fact, even with the dinosaurs gone, most new mammal species stuck to being small. We get so hung up on size that we’ve missed the real story, closer to the ground.

Two pterosaurs fighting over prey in flight. Illustration.
Pterosaurs weren’t dinosaurs, but their aerial capabilities gave them an upper hand in the Late Triassic. De Agostini via Getty Images

Myth: Dinosaurs dominated the planet for millions of years.

Fact: No single species can dominate a planet.

Our fixation on a prehistoric hierarchy says more about us than the actual geological record. In our imaginations, we’ve turned dinosaurs into creatures that took over the planet and held on until a cosmic accident wiped them out. Dinosaurs of the Triassic, Jurassic, and Cretaceous lived on every major landmass for more than 150 million years. Often, their supposed reign is compared to what we think of as ours—a paltry 300,000 years that Homo sapiens has been around.  

But the comparison isn’t one-to-one. Dinosaurs were not a single species, but an entire group of organisms. More fundamentally, no species truly stands alone: Even the most long-lived and widespread organisms rely on others. Gigantic, plant-eating dinosaurs had to eat a Mesozoic salad bar of ginkgoes, horsetails, conifers, and other plants—food that required them to have specialized bacteria in their guts for digestion. Even the great T. rex was an ecosystem by itself, preying on herbivores that in turn, ate plants that fostered relationships with fungi and microorganisms in the soil. To look at such an image of life and focus on dominance is looking in the wrong place, dividing the history of life into winners and losers and missing the connections and community required for diverse creatures to thrive. Perhaps dinosaurs can reign supreme in the movies, where we have a perpetual fixation with putting ourselves in the way of their toothy maws. But the real lesson of Triceratops and kin is in how evolution flowers—not who rules the Earth.

The post 4 reasons dinosaurs never really ruled the Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why are these orcas harassing porpoises? Scientists have 3 theories. https://www.popsci.com/environment/orcas-harass-porpoises/ Fri, 29 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=576067
A killer whale in the Salish Sea is observed harassing a porpoise, a behavior that has long perplexed scientists.
A killer whale in the Salish Sea is observed harassing a porpoise, a behavior that has long perplexed scientists. Wild Orca

The Southern Resident orcas only eat fish, particularly Chinook salmon.

The post Why are these orcas harassing porpoises? Scientists have 3 theories. appeared first on Popular Science.

]]>
A killer whale in the Salish Sea is observed harassing a porpoise, a behavior that has long perplexed scientists.
A killer whale in the Salish Sea is observed harassing a porpoise, a behavior that has long perplexed scientists. Wild Orca

Despite only eating fish, the Southern Resident orcas of the Pacific Northwest’s Salish Sea are known for a perplexing behavior. They harass and even kill porpoises without eating them and scientists are not really sure why. A study published September 28 in the journal Marine Mammal Science looked at over 60 years of data to try and solve this ongoing mystery.

[Related: Raising male offspring comes at a high price for orca mothers.]

While their relatives called transient killer whales eat other organisms including squid, shark, and porpoises, the Southern Resident orcas exclusively eat fish, particularly Chinook salmon. The strange porpoise-harassing behavior was first scientifically documented in 1962. The new study analyzed 78 documented incidents and found three plausible explanations.

Orcas at play

The behavior may be a form of social play for orcas. Like many intelligent species including dogs, elephants, and kangaroos, these whales sometimes engage in playful activities as a way to bond, communicate, or just simply enjoy themselves. Going after porpoises might benefit their group coordination and teamwork.

This theory may be reminiscent of the orcas who became famous for sinking boats in Spain and Portugal. While the Southern Resident killer whales and the whales from the Iberian Peninsula are two different populations with distinct cultures, their affinity for play could be something both populations share, according to the authors of the study

Hunting practice

Going after a larger animal like porpoises might help these whales hone their critical salmon-hunting skills. They may view porpoises as moving targets to practice their hunting techniques, even if a meal is not the end result.

Mismothering behavior

The orcas may be attempting to provide care for porpoises that they perceive as either sick or weak. This could be a behavioral manifestation of their natural inclination to help others within their pod. Female orcas have been observed carrying their deceased calves and have been observed carrying porpoises in a similar manner.  

Scientists also call mismothering behavior displaced epimeletic behavior. It could be due to their limited opportunities to care for their young, according to study co-author and science and research director at Wild Orca Deborah Giles. 

“Our research has shown that due to malnutrition, nearly 70 percent of Southern Resident killer whale pregnancies have resulted in miscarriages or calves that died right away after birth,” Giles said in a statement.

An endangered group

Southern Resident killer whales are considered an endangered population. Currently, only 75 individuals exist and their survival is essentially tied to Chinook salmon. A 2022 study found that these orcas have been in a food deficit for over 40 years and another study found that the older and fatter fish are also becoming more scarce in several populations.

“I am frequently asked, why don’t the Southern Residents just eat seals or porpoises instead?” said Giles. “It’s because fish-eating killer whales have a completely different ecology and culture from orcas that eat marine mammals—even though the two populations live in the same waters. So we must conclude that their interactions with porpoises serve a different purpose, but this purpose has only been speculation until now.”

Even with these three theories for the behavior, the team acknowledges that the exact reason behind porpoise harassment may always remain a mystery. What is clear is that porpoises are not a part of the Southern Resident killer whale diet, so eating them is highly unlikely. 

“Killer whales are incredibly complex and intelligent animals. We found that porpoise-harassing behavior has been passed on through generations and across social groupings. It’s an amazing example of killer whale culture,” Sarah Teman, a study co-author and marine mammal biologist with the University of California, Davis School of Veterinary Medicine’s SeaDoc Society, said in a statement. “Still, we don’t expect the Southern Resident killer whales to start eating porpoises. The culture of eating salmon is deeply ingrained in Southern Resident society. These whales need healthy salmon populations to survive.”

However, this research does underscore the importance of salmon conservation in the Salish Sea and the Southern Resident’s entire range. They generally stay near southern Vancouver Island and Washington State, but their range can extend as far as the central California coast and southeastern Alaska.  Maintaining an adequate salmon supply will be vital to their survival and well-being of the Salish Sea ecosystem as a whole.

The post Why are these orcas harassing porpoises? Scientists have 3 theories. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This 6-million-year-old turtle shell still has some DNA https://www.popsci.com/environment/6-million-year-old-turtle-dna/ Fri, 29 Sep 2023 13:00:00 +0000 https://www.popsci.com/?p=575977
The researchers found preserved bone cells in the carapace, which exhibited structures like the nucleus of a cell, where DNA traces were found.
The researchers found preserved bone cells in the carapace, which exhibited structures like the nucleus of a cell, where DNA traces were found. Edwin Cadena/Universidad del Rosario/Smithsonian Tropical Research Institute in Panama

The extracted material could redefine how long DNA and protein can survive in the fossil record.

The post This 6-million-year-old turtle shell still has some DNA appeared first on Popular Science.

]]>
The researchers found preserved bone cells in the carapace, which exhibited structures like the nucleus of a cell, where DNA traces were found.
The researchers found preserved bone cells in the carapace, which exhibited structures like the nucleus of a cell, where DNA traces were found. Edwin Cadena/Universidad del Rosario/Smithsonian Tropical Research Institute in Panama

Sea turtles have been around for at least 110 million years, yet relatively little is known about their evolution. Two of the most common sea turtles on Earth are olive ridley and Kemp’s ridley turtles that belong to a genus called Lepidochelys that could help fill in some of the gaps of sea turtle biology and evolution. A team of paleontologists not only discovered the oldest known fossil of turtle from the Lepidochelys genus, but also found some traces of ancient turtle DNA. The findings are detailed in a study published September 28 in the Journal of Vertebrate Paleontology.

[Related: 150 million-year-old turtle ‘pancake’ found in Germany.]

The DNA comes from the remains of a turtle shell first uncovered in 2015 in the Chagres Formation on Panama’s Caribbean coast. It represents the oldest known fossil evidence of Lepidochelys turtles. The turtle lived approximately 6 million years ago, curing the upper Miocene Epoch. At this time, present day Panama’s climate was getting cooler and drier, sea ice was accumulating at Earth’s poles, rainfall was decreasing, sea levels were falling.

“The fossil was not complete, but it had enough features to identify it as a member of the Lepidochelys genus,” study co-author and Universidad del Rosario in Bogotá, Colombia paleontologist Edwin Cadena tells PopSci. Cadena is also a research associate at the Smithsonian Tropical Research Institute in Panama.

The team detected preserved bone cells called osteocytes. These bone cells are the most abundant cells in vertebrates and they have nucleus-like structures. The team used a solution called DAPI to test the osteocytes for genetic material.

“In some of them [the osteocytes], the nuclei were preserved and reacted to DAPI, a solution that allowed us to recognize remains of DNA. This is the first time we have documented DNA remains in a fossilized turtle millions of years old,” says Cadena.

According to the study, fossils like this one from vertebrates preserved in this part of Panama are important for our understanding of the biodiversity that was present when the Isthmus of Panama first emerged roughly 3 million years ago. This narrow strip of land divided the Caribbean Sea and the Pacific Ocean and joined North and South America. It created a land bridge that made it easier for some animals and plants to migrate between the two continents.

[Related: Hungry green sea turtles have eaten in the same seagrass meadows for about 3,000 years.]

This specimen could also have important implications for the emerging field of molecular paleontology. Scientists in this field study ancient and prehistoric biomatter including proteins, carbohydrates, lipids, and DNA that can sometimes be extracted from fossils. 

Molecular paleontology aims to determine if scientists can use this type of evidence to determine more about the organisms than their physical shape, which is typically what is preserved in most fossils. Extracting this tiny material from bones was critical in sequencing the Neanderthal genome, which earned Swedish scientist Svante Pääbo the 2022 Nobel prize in physiology or medicine.

“Many generations have grown up with the idea of extracting and bringing back to life extinct organisms,” says Cadena. “However, that is not the real purpose of molecular paleontology. Instead, its goal is to trace, document, and understand how complex biomolecules such as DNA and proteins can be preserved in fossils.”

This new turtle specimen could help other molecular paleontologists better understand how soft tissues can be preserved over time. It could also shift the idea that original biomolecules like proteins or DNA have a specific timeline for preservation in fossils and encourage re-examining older specimens for traces of biomolecules. 

The post This 6-million-year-old turtle shell still has some DNA appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What really happens during a near-death experience https://www.popsci.com/health/near-death-experience/ Fri, 29 Sep 2023 10:00:00 +0000 https://www.popsci.com/?p=575374
A person receiving chest compressions.
Many people resuscitated after cardiac arrest will recall near-death experiences. Depositphotos

Understanding brushes with death could help doctors save more lives.

The post What really happens during a near-death experience appeared first on Popular Science.

]]>
A person receiving chest compressions.
Many people resuscitated after cardiac arrest will recall near-death experiences. Depositphotos

Sci-fi author Brian Herbert once wrote, “The only guarantee in life is death, and the only guarantee in death is its shocking unpredictability.” These words ring true to researchers who investigate what happens in a person’s final moments—and the frustration that comes with these studies. One big problem almost always gets in the way: How do you ask people what dying feels like when they’re no longer here? 

Because we haven’t yet figured out how to communicate with the dead, the best-case scenario is talking to people who have had a close brush with death. They often mention seeing bright lights, their life flashing before their eyes, or visions of deceased loved ones. Some have even reported spotting the Grim Reaper by their bedside. It’s a paradoxical situation, says Kevin Nelson, a professor of neurology at the University of Kentucky: A few perceptions are common—a shining light, for instance—but the near-death experience is unique to each individual.

There’s still a lot of mystery when it comes to the cause, but the field is progressing thanks to people who have allowed scientists to study their brains in these situations. People who have survived these close calls say the encounter can be life-changing. One thing is certain: medical experts say near-death experiences are not a figment of the imagination. 

And figuring out the mechanisms behind this phenomenon goes beyond general curiosity. One goal is to better understand how cardiac arrests happen. It could also potentially save lives, because doctors would have more knowledge for when to continue resuscitations after a patient’s heart stops.

“The research not only benefits our understanding of consciousness, but also in understanding the importance of the heart, lung, and brain in our everyday physiology,” says Jimo Borjigin, an associate professor of neurology at the University of Michigan Medical School.

Unreal recall

A near-death experience can happen to anyone. In fact, 1 in 10 people have reported sharper senses, slowed time, out-of-body sensations or other features associated with near-death, despite not being in grave danger. Research shows that near-death experiences come in four types: emotional, cognitive, spiritual and religious experiences, and supernatural. Of the four, people often recall supernatural activity, particularly the feeling of detaching from a physical body.

About 76 percent of people report an out-of-body experience during a near-death experience. While some people may attribute this to a spiritual experience, this is actually a sensory deception caused by the brain, which scientists have successfully replicated in people who are asleep. Research has shown that direct electrical stimulation of a brain area normally inactive in REM sleep can provoke an out-of-body experience. “Like a flip of a switch, you can literally throw somebody out of their body and back into their body,” Nelson says.

[Related: CPR can save lives. Here’s how (and when) to do it.]

Often, though, people with cardiac arrest will recall near-death experiences. “About a quarter of people who suffer and survived cardiac arrest have memories about some aspect of near-death experience, Borjigin says. This is because people with cardiac arrest have decreasing blood pressure, she says. With the heart unable to pump properly, oxygen is unable to travel to the rest of the body, which is essential for every single cell in your body to survive. When a brain is alerted to a sudden decline in oxygen, your brain undergoes certain changes that contribute to the perceptual distortions that accompany a near-death experience. 

Electrical surges in the brain

Ten years ago, Borjigin and her team observed that rats in simulated cardiac arrest still had fully active brains even 30 seconds after their hearts stopped. What’s more, their brains increased in electrical activity. To confirm whether this happens in humans, Borjigin recently tested the brains of four people who were critically ill and removed from life support.

When these comatose patients were taken off their ventilators, they could not breathe on their own. But, using EEGs, Borjigin noticed two people showed a surge in gamma brainwaves as their bodies started shutting down. Gamma brainwaves are usually a sign of consciousness, because they are mostly active when someone is awake and alert. 

“We’ve shown the brain has a unique mechanism that deals with a lack of oxygen because oxygen is so essential for survival that even an acute loss massively activates the brain and could lead to a near-death experience,” Borjigin explains. 

The boost in gamma waves occurred in a brain area called the temporo-parieto-occipital (TPO) junction. This is responsible for blending information from our senses, including touch, motion, and vision, into our conscious selves. It’s impossible to know if the increased brain activity was related to any visions they may have had, because, sadly, the two patients died. But Borjigin suggests activation of this area suggests people may likely pick up sounds and understand language. “They might hear and perceive the conversation around them and form a visual image in their brain even when their eyes are closed.” 

Hidden consciousness

In one of the largest studies of near-death experiences, an international team of doctors has linked the surge in brain activity to what they called a hidden consciousness immediately following death. In the study, people who were brought back to life through CPR after cardiac arrest could recall memories and conversations while they were seemingly unconscious. 

Between May 2017 and March 2020, the team tracked 567 people who underwent a cardiac arrest. They used EEGs and cerebral oxygenation monitoring to measure electrical activity and brain oxygen levels during CPR. To study auditory and visual awareness, the team used a tablet showing one of 10 images on the screen, and five minutes after, it would play a recording of fruit names: pear, banana, and apple, for another five minutes. 

Only 53 people of the original 567 participants were successfully resuscitated. Initially, they showed no signs of brain activity and were considered dead. But during the CPR, the team noticed bursts of activity. These spikes included gamma waves and others: delta, theta, alpha, and beta waves—all electrical activity that signals consciousness. 

[Related: How your brain conjures dreams]

Twenty-eight of those 53 patients were cognitively capable of having an interview. Eleven people recalled being lucid during CPR, being aware of what was happening or showing perceptions of consciousness like an out-of-body experience. No one could recall the visual image but when asked to randomly name three fruit, one person correctly named all the fruits in the audio recording—though the authors note this could have been a random lucky guess. 

The study authors also included self-reports of 126 other survivors of cardiac arrests not involved in the study and what they remembered from almost dying. Common themes included the pain and pressure of chest compressions, hearing conversations from doctors, out-of-body experiences, and abstract dreams that had nothing to do with the medical event.

The findings debunk the idea that an oxygen-deprived brain stays alive for only five to ten minutes. They also raise the question whether doctors can save people already determined to be dead. “These patients were actually alive within, as seen in the positive waves on the EEG, but externally they were dead,” says Chinwe Ogedegbe, an emergency trauma center section chief and coauthor of the study. 

Beyond the brain’s resilience to the lack of oxygen, the authors propose an alternative “braking system” that could explain the distorted perceptions of consciousness. The brain normally filters and inhibits unneeded information when you’re awake. In this unconscious state, however, the braking system is gone, which could allow dormant brain pathways to activate and access a deeper realm of consciousness containing all of your memory, thoughts, and actions. “Instead of being hallucinatory, illusory or delusional, this appears to facilitate lucid understanding of new dimensions of reality,” the authors write in their paper.

Unfortunately, with only a small number of participants surviving their cardiac arrest, it’s unclear whether this altered consciousness is more visual or auditory. Ogedegbe is working to increase the number of participants in the next trial to 1,500. Doing so will give researchers a better idea of the type of brain activity that goes on when someone is at death’s door, and potentially provide comfort that their loved ones can sense them in their final moments.

The post What really happens during a near-death experience appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A boiling hot supercontinent could kill all mammals in 250 million years https://www.popsci.com/science/mammals-extinction-volcano-supercontinent/ Thu, 28 Sep 2023 18:00:00 +0000 https://www.popsci.com/?p=575587
A volcano spews lava and ash. In roughly 250 million years, massive tectonic activity could push together all of our current landmasses into a supercontinent like Pangea and make the climate inhospitable to humans and other mammals.
In roughly 250 million years, tectonic activity could push together all of our current landmasses into a supercontinent like Pangea and make the climate inhospitable to humans and other mammals. Deposit Photos

The history and future of mass extinctions.

The post A boiling hot supercontinent could kill all mammals in 250 million years appeared first on Popular Science.

]]>
A volcano spews lava and ash. In roughly 250 million years, massive tectonic activity could push together all of our current landmasses into a supercontinent like Pangea and make the climate inhospitable to humans and other mammals.
In roughly 250 million years, tectonic activity could push together all of our current landmasses into a supercontinent like Pangea and make the climate inhospitable to humans and other mammals. Deposit Photos

Despite having the critical and even miraculous ingredients to sustain life from microscopic viruses up to big blue whales, planet Earth likely has a future that spells some doom for most, if not all, species of mammals—including humans. A study published September 25 in the journal Nature Geosciences made the bold prediction that in about 250 million years, all of Earth’s major land masses will join together as one. When they do, it could make our planet one extremely hot and almost completely uninhabitable for mammals.

[Related: Mixing volcanic ash with meteorites may have jump-started life on Earth.]

“Widespread temperatures of between 40 to 50 degrees Celsius [104 to 122 degrees Fahrenheit], and even greater daily extremes, compounded by high levels of humidity would ultimately seal our fate,” study co-author and University of Bristol paleoclimatologist Alexander Farnsworth said in a statement. “Humans—along with many other species—would expire due to their inability to shed this heat through sweat, cooling their bodies.”

The models in this study predict that CO2 levels would rise to between 410 parts per million and 816 parts per million in a few million years This is roughly the same as today’s level, which is already pushing the planet into dangerously hot water, or up to twice as high.

“They do explain quite nicely that it’s a combination of both those factors, kind of a double whammy situation,” geophysicist Ross Mitchell of the Chinese Academy of Sciences, who was not involved in the study, told Science magazine. “If there’s any disagreement I have with this paper, it’s that they’re more right than they thought they were.”

This prediction aligns well with Earth’s past periods of mass extinction and the volatile history of our planet. Here are some other times that mammalian and human life on Earth was almost completely wiped out.

The Pleistocene Ancestral Bottleneck

About 800,000 to 900,000 years ago, the population of human ancestors drastically dropped. A study published in August estimates that there were only about 1,280 breeding individuals alive during this transition between the early and middle Pleistocene. About 98.7 percent of the ancestral population was lost at the beginning of this ancestral bottleneck that lasted for roughly 117,000 years.

During this time, modern humans spread outside of the African continents and other early human species like Neanderthals began to go extinct. The Australian continent and the Americas also saw humans for the first time and the climate was generally cold. 

Some of the potential reasons behind this population drop are mostly related to extremes in climate. Temperatures changed, severe droughts persisted, and food sources may have dwindled as animals like mammoths, mastodons, and giant sloths went extinct. According to the study, an estimated 65.85 percent of current genetic diversity may have been lost due to this bottleneck.

[Related: We’re one step closer to identifying the first-ever mammals.]

The Great Dying

About 250 million years ago, massive volcanic eruptions triggered catastrophic climate changes that killed 80 to 90 percent of species on Earth. The Permian-Triassic mass extinction, or the “Great Dying,” paved the way for dinosaurs to dominate Earth, but was even worse than the Cretaceous–Paleogene extinction that wiped out the dinosaurs 66 million years ago.

According to a study published in May, saber-toothed creature called Inostrancevia filled a gap in southern Pangea’s ecosystem, when it was already devoid of top predators. Eventually, Inostrancevia also went extinct about 252 million years ago, as Earth’s species fought to gain a foothold on a changing planet. 

This example of how the past is prologue also bears a warning for our future, since the team says The Great Dying is the historical event that most closely parallels Earth’s current environmental crisis.

“Both involve global warming related to the release of greenhouse gasses, driven by volcanoes in the Permian and human actions currently,” study co-author museum curator and paleontologist Christian Kammerer told PopSci in May. “[They] represent a very rare case of rapid shifts between icehouse and hothouse Earth. So, the turmoil we observe in late Permian ecosystems, with whole sections of the food web being lost, represents a preview for our world if we don’t change things fast.”

The Ultimate Mammalian Survivor

Despite Earth constantly trying to kill us, life finds a way. Some of our very early ancestors potentially even shared a brief moment with Titanosaurs and the iconic Triceratops. These distant mammalian relatives also survived the Earth’s most famous mass extinction event: the Cretaceous-Paleogene (K-Pg) mass extinction that wiped out non-avian dinosaurs on a spring day about 66 million years ago.

[Related: This badger-like mammal may have died while trying to eat a dinosaur.]

A study published in June revealed that a Cretaceous origin for placental mammals, the diverse group that includes humans, dogs, and bats, briefly co-existed with dinosaurs. After an asteroid struck the Earth near Mexico’s Yucatán Peninsula, the devastation in its wake wiped out all of the non-avian dinosaurs and many mammals, such as a Madagascan rodent-looking animal named Vintana sertichi  that weighed up to 20 pounds Scientists have long debated if placental mammals were present with the dinosaurs before the Cretaceous-Paleogene (K-Pg) mass extinction, or if they only evolved after the dinosaurs died out. 

This study used statistical analysis that showed groups that include primates, rabbits and hares (Lagomorpha), and dogs and cats (Carnivora) evolved just before the K-Pg mass extinction and the impact that the modern lines of today’s placental mammals started to take shape after the asteroid hit. As with other mammals, they likely began to diversify once the dinosaurs were out of the picture.

The post A boiling hot supercontinent could kill all mammals in 250 million years appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How carrots get their trademark orange color https://www.popsci.com/health/orange-carrot-gene/ Thu, 28 Sep 2023 16:00:00 +0000 https://www.popsci.com/?p=575550
A row of organic orange carrots with their green stems still attached on a table.
While carrots come in many colors, orange carrots have been the most popular due to their sweetness and color. Deposit Photos

A surprisingly low number of recessive genes give the tasty root its signature hue.

The post How carrots get their trademark orange color appeared first on Popular Science.

]]>
A row of organic orange carrots with their green stems still attached on a table.
While carrots come in many colors, orange carrots have been the most popular due to their sweetness and color. Deposit Photos

Most nutritionists advise people to “eat the rainbow” to balance their diet—think greens like kale, purples like eggplant, reds like tomatoes.  Consuming nutritious and naturally occuring orange foods like carrots packed with vitamin A, fiber, antioxidants, and pigments called carotenoids is a must to get a full and healthy spectrum. Carotenoids even got their name because they were first isolated from carrots.  But what is exactly behind the bright hue of some of our favorite carrots? Only three specific genes are required to give orange carrots their signature color, according to a study published September 28 in the journal Nature Plants.

[Related: Carrots were once a crucial tool in anti-Nazi propaganda.]

In the study, a team from North Carolina State University and the University of Wisconsin-Madison looked at the genetic blueprints of more than 600 varieties of carrots. Surprisingly, they found that these three required genes all need to be recessive, or turned off.

“Normally, to make some function, you need genes to be turned on,” study co-author and North Carolina State University horticultural scientist Massimo Iorizzo said in a statement.  “In the case of the orange carrot, the genes that regulate orange carotenoids—the precursor of vitamin A that have been shown to provide health benefits—need to be turned off,” Iorizzo said. 

In 2016, this team sequenced the carrot genome for the first time and also uncovered the gene involved in the pigmentation of yellow carrot. For this new study, they sequenced 630 carrot genomes as part of a continuing study on the history and domestication of the crunchy root veggie.

The team performed selective sweeps, or structural analyses among five different carrot groups. During these sweeps, they looked for areas of the genome that are heavily selected in certain groups. They found that many of the genes involved in flowering were under selection, primarily to delay the flowering process. This event causes the edible root that we eat called the taproot to turn woody and inedible. 

“We found many genes involved in flowering regulation that were selected in multiple populations in orange carrot[s], likely to adapt to different geographic regions,” said Iorizzo. 

Additionally, the study created a general timeline of carrot domestication and found more evidence that carrots were domesticated in the 9th or 10th century CE in western and central Asia. 

“Purple carrots were common in central Asia along with yellow carrots. Both were brought to Europe, but yellow carrots were more popular, likely due to their taste,” said Iorizzo.

[Related: WTF are purple carrots and where did they come from?]

In about the 15th or 16th century, orange carrots made their appearance in western Europe, potentially as the result of crossing a yellow carrot with a white one. The bright color and sweet flavor of orange carrots likely made it more popular than other varieties, so farmers continued selecting for them. In northern Europe, different types of orange carrots were developed in the 16th and 17th centuries and orange carrots of various shades can be seen in paintings from that area. They continued to grow in popularity as more understanding about the importance of alpha- and beta-carotenes and vitamin A in the diet for eye health progressed in the late 19th and early 20th centuries. 

The findings in this study shed more light on the traits that are important to improving carrots and could lead to better health benefits from the nutritious vegetable.

The post How carrots get their trademark orange color appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How many ancient humans does it take to fight off a giant hyena? https://www.popsci.com/science/human-hyena-scavenger-pleistocene/ Thu, 28 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=575558
A hyenea shows its jaws. Giant hyenas went extinct about 500,000 years ago, but were roughly 240 pounds and skilled scavengers like their modern counterparts.
Giant hyenas went extinct about 500,000 years ago, but were roughly 240 pounds and skilled scavengers like their modern counterparts. Deposit Photos

During the Pleistocene, competition was tough even for scraps.

The post How many ancient humans does it take to fight off a giant hyena? appeared first on Popular Science.

]]>
A hyenea shows its jaws. Giant hyenas went extinct about 500,000 years ago, but were roughly 240 pounds and skilled scavengers like their modern counterparts.
Giant hyenas went extinct about 500,000 years ago, but were roughly 240 pounds and skilled scavengers like their modern counterparts. Deposit Photos

One of the most enduring mysteries about our earliest ancestors and extinct human relatives is how they ate and procured enough food to sustain themselves millions of years ago. We believe that archery first arrived in Europe about 54,000 years ago and Neanderthals were cooking and eating crab about 90,000 years ago, but scavenging was likely necessary to get a truly hearty meal. A modeling study published September 28 in the journal Scientific Reports found that groups of hominins roughly 1.2 to 0.8 million years ago in southern Europe may have been able to compete with giant hyenas for carcasses of animals abandoned by larger predators like saber-toothed cats.

[Related: An ‘ancestral bottleneck’ took out nearly 99 percent of the human population 800,000 years ago.]

Earlier research has theorized that the number of carcasses abandoned by saber-toothed cats may have been enough to sustain some of southern Europe’s early hominin populations. However, it’s been unclear if competition from giant hyenas (Pachycrocuta brevirostris) would have limited hominin access to this food source. These extinct mongoose relatives were about 240 pounds–roughly the size of a lioness–and went extinct about 500,000 years ago. 

“There is a hot scientific debate about the role of scavenging as a relevant food procurement strategy for early humans,” paleontologist and study co-author Jesús Rodríguez from the National Research Center On Human Evolution (CENIEH) in Burgos, Spain tells PopSci. “Most of the debate is based on the interpretation of the scarce and fragmentary evidence provided by the archaeological record. Without denying that the archaeological evidence should be considered the strongest argument to solve the question, our intention was to provide elements to the debate from a different perspective.”

For this study, Rodríguez and co-author Ana Mateos looked at the Iberian Peninsula in the late-early Pleistocene era. They ran computer simulations to model competition for carrion–the flesh of dead animals–between hominins and giant hyenas in what is now Spain and Portugal. They simulated whether saber-toothed cats and the European jaguar could have left enough carrion behind to support both hyena and hominin populations—and how this may have been affected by the size of scavenging groups of hominins. 

They found that when hominins scavenged in groups of five or more, these groups could have been large enough to chase away giant hyenas. The hominin populations also exceeded giant hyena populations by the end of these simulations. However, when the hominins scavenged in very small groups, they could only survive to the end of the simulation when the predator density was high, which resulted in more carcasses to scavenge.  

[Related: Mysterious skull points to a possible new branch on human family tree.]

According to their simulations, the potential optimum group size for scavenging hominins was just over 10 individuals. This size was large enough to chase away saber-toothed cats and jaguars. However, groups of more than 13 individuals would have likely required more carcasses to sustain their energy expenditure. The authors caution that their simulations couldn’t specify this exact “just right” group size, since the numbers of hominins needed to chase away hyenas, saber-toothed cats, and jaguars were pre-determined and arbitrarily assigned.

“The simulations may not determine the exact value of the optimum, but show that it exists and depends on the number of hominins necessary to chase away the hyenas and of the size of the carcasses,” says Rodríguez.

Scavenged remains may have been an important source of meat and fat for hominins, especially in winter when plant resources were scarce. This team is working on simulating the opportunities hominins had for scavenging in different ecological scenarios in an effort to change a view that scavenging is marginal and that hunting is a more “advanced” and more “human” behavior than scavenging. 

“The word for scavenger in Spanish is ‘carroñero.’ It has a negative connotation, and is frequently used as an insult. We do not share that view,” says Rodríguez. “Scavengers play a very important role in ecosystems, as evidenced by the ecological literature in the last decades. We view scavenging as a product of the behavioral flexibility and cooperative abilities of the early hominins.”

The post How many ancient humans does it take to fight off a giant hyena? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A fossilized trilobite stomach can show us clues to Cambrian cuisine https://www.popsci.com/environment/trilobite-fossil-stomach/ Wed, 27 Sep 2023 15:30:00 +0000 https://www.popsci.com/?p=575001
An illustration of Bohemolichas feeding on the seafloor, moments before it is engulfed, buried, and preserved by an underwater mud flow.
An illustration of Bohemolichas feeding on the seafloor, moments before it is engulfed, buried, and preserved by an underwater mud flow. Jiri Svoboda

The 465-million-year-old gut contents reveal similarities between the ancient arthropod and modern crabs.

The post A fossilized trilobite stomach can show us clues to Cambrian cuisine appeared first on Popular Science.

]]>
An illustration of Bohemolichas feeding on the seafloor, moments before it is engulfed, buried, and preserved by an underwater mud flow.
An illustration of Bohemolichas feeding on the seafloor, moments before it is engulfed, buried, and preserved by an underwater mud flow. Jiri Svoboda

About 465 million years ago, a now extinct arthropod called a trilobite was eating its way across the present day Czech Republic. After it died, the passage of time actually preserved the plentiful contents of this specimen’s prehistoric guts. A team of paleontologists is using this full fossilized belly to learn more about the feeding habits and lifestyle of these common fossilized arthropods. The findings are detailed in a study published September 27 in the journal Nature.

[Related: Trilobites may have jousted with head ‘tridents’ to win mates.]

More than 20,000 species of trilobite lived during the early Cambrian to the end-Permian period roughly 541 to 252 million years ago. They are some of the most common fossil specimens from this time period, yet paleontologists do not know much about their feeding habits since gut contents usually disappear over time, and until recently there were no known fossil specimens with them intact.

In the study, a team from institutions in Sweden and the Czech Republic examined a fossil specimen of Bohemolichas incola first uncovered near Prague over 100 years ago. Study co-author and paleontologist Petr Kraft from Charles University in Prague had long suspected that this specimen may have a gut full of food intact, but did not have a suitable technique to look inside the trilobite’s innards. Study co-authors and paleontologists Valéria Vaskaninova and Per Ahlberg from Uppsala University in Sweden suggested using a synchrotron in one of their fossil scanning sessions. This machine is a large electron accelerator that produces powerful laser-like x-rays to take high-quality scans of the fossil

“The results were fantastic, showing all the gut contents in detail so that we could identify what the trilobite had been eating,” Ahlberg tells PopSci. “Remains of ostracods (small shell-bearing crustaceans, still around today), hyoliths (extinct cone-shaped animals of uncertain affinities) and stylophorans (extinct echinoderms that look like little armor-plated electric guitars). These are all kinds of animals that lived in the local environment.”

The team believes that Bohemolichas incola was likely an opportunistic scavenger. It also was potentially a light crusher and a chance feeder, which means that it ate both dead or living animals, which either disintegrated easily or were actually small enough to be swallowed whole. However, after this particular Bohemolichas incola died, the circle of life continued and the scavenger became the scavenged. Vertical tracks of other scavengers were found on the specimen. These unknown creatures burrowed into this trilobite’s carcass and targeted its soft tissue, but avoided its gut. Staying away from the gut implies that there were some noxious conditions inside Bohemolichas incola’s digestive system and potentially ongoing enzymatic activity.

[Related: These ancient trilobites are forever frozen in a conga line.]

“We were able to draw conclusions about the chemical environment inside the gut of the living trilobite. The shell fragments on the gut have not been etched by stomach acids, and this shows that the gut pH must have been close to neutral, similar to the condition in modern crabs and horseshoe crabs,” says Ahlberg. “This may indeed be a very ancient shared characteristic of trilobites and these modern arthropods.”

Future studies into trilobites could use similar techniques to look for more gut fills. Since this group is a very diverse group of animals, it can’t be assumed that this particular species is representative of the feeding habits for all. 

“This project shows how cutting-edge technology can come together with really old museum specimens. The trilobite was collected in 1908, and has been in a museum ever since, but it is only now that we have the technology to unlock its secrets,” says Ahlberg. “This illustrates not only the rapid technological progress of our time, but also the importance of well-maintained museum collections.”

The post A fossilized trilobite stomach can show us clues to Cambrian cuisine appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mysterious ‘fairy circles’ may appear on three different continents https://www.popsci.com/science/fairy-circles-desert-ai/ Wed, 27 Sep 2023 14:00:00 +0000 https://www.popsci.com/?p=575087
Aerial view of a hot air balloon over Namib desert. The circular “fairy circles” are derived from any vegetation & surrounded by tall grass.
Aerial view of a hot air balloon over Namib desert. The circular “fairy circles” are derived from any vegetation & surrounded by tall grass. Getty Images

Researchers used AI to comb the world's deserts for the natural phenomena, but debate continues.

The post Mysterious ‘fairy circles’ may appear on three different continents appeared first on Popular Science.

]]>
Aerial view of a hot air balloon over Namib desert. The circular “fairy circles” are derived from any vegetation & surrounded by tall grass.
Aerial view of a hot air balloon over Namib desert. The circular “fairy circles” are derived from any vegetation & surrounded by tall grass. Getty Images

The natural circles that pop up on the soil in the planet’s arid regions are an enduring scientific debate and mystery. These “fairy circles” are circular patterns of bare soil surrounded by plants and vegetation. Until very recently, the unique phenomena have only been described in the vast Namib desert and the Australian outback. While their origins and distribution are hotly debated, a study with satellite imagery published on September 25 in the journal Proceedings of the National Academy of Sciences (PNAS) indicates that fairy circles may be more common than once realized. They are potentially found in 15 countries across three continents and in 263 different sites. 

[Related: A new study explains the origin of mysterious ‘fairy circles’ in the desert.]

These soil shapes occur in arid areas of the Earth, where nutrients and water are generally scarce. Their signature circular pattern and hexagonal shape is believed to be the best way that the plants have found to survive in that landscape. Ecologist Ken Tinsly observed the circles in Namibia in 1971, and the story goes that he borrowed the name fairy circles from a naturally occurring ring of mushrooms that are generally found in Europe.

By 2017, Australian researchers found the debated western desert fairy circles, and proposed that the mechanisms of biological self-organization and pattern formation proposed by mathematician Alan Turing were behind them. In the same year, Aboriginal knowledge linked those fairy circles to a species of termites. This “termite theory” of fairy circle origin continues to be a focus of research—a team from the University of Hamburg in Germany published a study seeming to confirm that termites are behind these circles in July.

In this new study, a team of researchers from Spain used artificial intelligence-based models to look at the fairy circles from Australia and Namibia and directed it to look for similar patterns. The AI scoured the images for months and expanded the areas where these fairy circles could exist. These locations include the circles in Namibia, Western Australia, the western Sahara Desert, the Sahel region that separates the African savanna from the Sahara Desert, the Horn of Africa to the East, the island of Madagascar, southwestern Asia, and Central Australia.

DCIM\101MEDIA\DJI_0021.JPG
Fairy circles on a Namibian plain. CREDIT: Audi Ekandjo.

The team then crossed-checked the results of the AI system with a different AI program trained to study the environments and ecology of arid areas to find out what factors govern the appearance of these circular patterns. 

“Our study provides evidence that fairy-circle[s] are far more common than previously thought, which has allowed us, for the first time, to globally understand the factors affecting their distribution,” study co-author and Institute of Natural Resources and Agrobiology of Seville soil ecologist Manuel Delgado Baquerizo said in a statement

[Related: The scientific explanation behind underwater ‘Fairy Circles.’]

According to the team, these circles generally appear in arid regions where the soil is mainly sandy, there is water scarcity, annual rainfall is between 4 to 12 inches, and low nutrient continent in the soil.

“Analyzing their effects on the functioning of ecosystems and discovering the environmental factors that determine their distribution is essential to better understand the causes of the formation of these vegetation patterns and their ecological importance,” study co-author and  University of Alicante data scientist Emilio Guirado said in a statement

More research is needed to determine the role of insects like termites in fairy circle formation, but Guirado told El País that “their global importance is low,” and that they may play an important role in local cases like those in Namibia, “but there are other factors that are even more important.”

The images are now included in a global atlas of fairy circles and a database that could help determine if these patterns demonstrate resilience to climate change. 

“We hope that the unpublished data will be useful for those interested in comparing the dynamic behavior of these patterns with others present in arid areas around the world,” said Guirado.

The post Mysterious ‘fairy circles’ may appear on three different continents appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The mathematical theory that connects swimming sperm, zebra stripes, and sunflower seeds https://www.popsci.com/science/alan-turing-pattern-zebra-sperm/ Wed, 27 Sep 2023 13:00:00 +0000 https://www.popsci.com/?p=574986
A close up of the black and white stripes of a zebra. The same patterns that dictate zebra stripes could also control the way sperm swim.
Recognizable patterns in nature may appear spontaneously when chemicals within the objects or organisms diffuse and then react together. Deposit Photos

Scientists inch closer to understanding the very basis of nature’s patterns.

The post The mathematical theory that connects swimming sperm, zebra stripes, and sunflower seeds appeared first on Popular Science.

]]>
A close up of the black and white stripes of a zebra. The same patterns that dictate zebra stripes could also control the way sperm swim.
Recognizable patterns in nature may appear spontaneously when chemicals within the objects or organisms diffuse and then react together. Deposit Photos

In nature, patterns of chemical interactions between two different substances are believed to govern the designs our eyes see—for example, a zebra’s stripes. These stripey designs are governed by a mathematical basis that is potentially overseeing another completely unrelated thing—the wavy patterns formed by sperm’s motion. According to a study published September 27 in the journal Nature Communications, the same mathematical theory could traverse both.

[Related: Monarch butterflies’ signature color patterns could inspire better drone design.]

To understand the connection, we need to go back more than 70 years. The wavy undulations of a sperm’s tail—or flagella—make striped patterns in space-time. These patterns potentially follow the same template proposed by mathematician Alan Turing, one of the most famous scientists of the 20th century. Turing is most well-known for helping crack the enigma code during World War II and ushering in a new age of computer science, but he also developed a theory informally called the reaction-diffusion theory for pattern formation. This 1952 theory predicted that recognizable patterns in nature may appear spontaneously when chemicals within the objects or organisms diffuse and then react together.

While this theory hasn’t been well proven by experimental evidence, Turing’s theory sparked more research into using reaction-diffusion mathematics as a way to understand natural patterns. These so-called Turing patterns are believed to govern leopard spots, whorls of seeds in sunflower heads, and even patterns of sand on the beach. 

In this new study, a team from the University of Bristol in England used Turing patterns as a way to look at the movement of sperm’s flagella and vibrating hair-like cells called cilia. 

“Live spontaneous motion of flagella and cilia is observed everywhere in nature, but little is known about how they are orchestrated,” study co-author and mathematician Hermes Gadêlha said in a statement. “They are critical in health and disease, reproduction, evolution, and survivorship of almost every aquatic microorganism [on] earth.”

Flagellar undulations are believed to make stripe patterns in space-time, in the form of the waves that travel along the tail to drive the sperm forward when it is in fluid. To look deeper, Gadêlha and his team used mathematical modeling, simulations, and data fitting to show that wavy flagellar movement can actually arise spontaneously without the influence of the fluid in their environment. According to the team, this is mathematically equivalent to Turing’s reaction-diffusion system that was first proposed for chemical patterns over 70 years ago.

For the swimming sperm, chemical reactions of molecular motors power its tail and the bending movement diffuses along the tail in waves. The fluid itself is playing a very minor role on how the tail moves.

[Related: The genes behind your fingerprints just got weirder.]

“We show that this mathematical ‘recipe’ is followed by two very distant species—bull sperm and Chlamydomonas (a green algae that is used as a model organism across science), suggesting that nature replicates similar solutions,” said Gadêlha. “Traveling waves emerge spontaneously even when the flagellum is uninfluenced by the surrounding fluid. This means that the flagellum has a fool-proof mechanism to enable swimming in low viscosity environments, which would otherwise be impossible for aquatic species. It is the first time that model simulations compare well with experimental data.”

The findings of this study could help understand fertility issues associated with abnormal flagellar motion, diseases caused by ineffective cilia, and be applied to robotics. Other models in nature may exist that could provide further experimental proof of Turing’s template, but more research is needed.  

The post The mathematical theory that connects swimming sperm, zebra stripes, and sunflower seeds appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Meet the first electric blue tarantula known to science https://www.popsci.com/environment/meet-the-first-electric-blue-tarantula-known-to-science/ Tue, 26 Sep 2023 16:00:00 +0000 https://www.popsci.com/?p=574604
A tarantula with a mostly black body, but bright blue legs and pincers. Chilobrachys natanicharum is the first tarantula species found in Thailand’s mangrove trees. CREDIT: Yuranan Nanthaisong/ZooKeys.
Chilobrachys natanicharum is the first tarantula species found in Thailand’s mangrove trees. CREDIT: Yuranan Nanthaisong/ZooKeys. Yuranan Nanthaisong/ZooKeys

The new tarantula species, with its extremely rare color, was found in a mangrove tree in Thailand.

The post Meet the first electric blue tarantula known to science appeared first on Popular Science.

]]>
A tarantula with a mostly black body, but bright blue legs and pincers. Chilobrachys natanicharum is the first tarantula species found in Thailand’s mangrove trees. CREDIT: Yuranan Nanthaisong/ZooKeys.
Chilobrachys natanicharum is the first tarantula species found in Thailand’s mangrove trees. CREDIT: Yuranan Nanthaisong/ZooKeys. Yuranan Nanthaisong/ZooKeys

Scientists in Thailand have discovered a new species of tarantula with a very unique blue hue. The tarantula is named Chilobrachys natanicharum and is also called the electric blue tarantula. The findings were described in a study published September 18 in the journal ZooKeys 

[Related: Before spider mites mate, one of them gets their skin removed.]

The new colorful arachnid was discovered in southern Thailand’s Phang-Nga province. It follows the identification of another new species of tarantula called Taksinus bambus, or the bamboo culm tarantula.

“In 2022, the bamboo culm tarantula was discovered, marking the first known instance of a tarantula species living inside bamboo stalks,” study co-author and Khon Kaen University entomologist Narin Chomphuphuang said in a statement. “Thanks to this discovery, we were inspired to rejoin the team for a fantastic expedition, during which we encountered a captivating new species of electric blue tarantula.”

The team that found the first not-so-blue bamboo culm tarantula included a local wildlife YouTuber named JoCho Sippawat. This year, Chomphuphuang joined up with Sippawat for a surveying expedition in the province to learn more about tarantula diversity and distribution. They identified this new species by this very distinctive coloration during the expedition.

“The first specimen we found was on a tree in the mangrove forest. These tarantulas inhabit hollow trees, and the difficulty of catching an electric-blue tarantula lies in the need to climb a tree and lure it out of a complex of hollows amid humid and slippery conditions,” Narin said. “During our expedition, we walked in the evening and at night during low tide, managing to collect only two of them.”

Chilobrachys natanicharum has blue coloring due to the unique structure of its hair and not the presence of blue pigments. CREDIT: Yuranan Nanthaisong
Chilobrachys natanicharum has blue coloring due to the unique structure of its hair and not the presence of blue pigments. CREDIT: Yuranan Nanthaisong

The color blue is very rare in nature. It can even exist in other animals that aren’t usually this color, including the blue lobsters that have recently been found in Massachusetts and France. Some animals also evolved wild colors including blues, yellows, and reds to appear poisonous to try and keep other animals from eating them.  

In order for an organism to appear blue, it must absorb very small amounts of energy while reflecting high-energy blue light. Since penetrating molecules that are capable of absorbing this energy is a complex process, the color blue is less common than other colors in the natural world. 

According to the study, the secret behind the electric blue tarantula’s wild color comes from the unique structure of their hair and not from a presence of blue pigment. Their hair incorporates nanostructures that manipulate the light shining on it to create the blue appearance. Their hair can also display a more violet hue depending on the light, which creates an iridescent effect. 

[Related: Blue-throated macaws are making a slow, but hopeful, comeback.]

This species was previously found on the commercial tarantula market, but there hadn’t been any documentation describing its natural habitat or unique features. 

“The electric blue tarantula demonstrates remarkable adaptability. These tarantulas can thrive in arboreal as well as terrestrial burrows in evergreen forests,” Narin said. “However, when it comes to mangrove forests, their habitat is restricted to residing inside tree hollows due to the influence of tides.”

To name the new species, the authors conducted an auction campaign and the scientific name of Chilobrachys natanicharum was selected. It is named after executives Natakorn and Nichada Changrew of Nichada Properties Co., Ltd., Thailand and the proceeds of the auction were donated to support the education of Indigenous Lahu children in Thailand and for cancer patients in need of money for treatment.

CREDIT: JoCho Sippawat/Pensoft Publishers.

The authors say that this discovery points to the continued importance of taxonomy as a basic aspect of research and conservation. It also highlights the need to protect mangrove forests from continued deforestation, as the electric blue tarantula is also one of the world’s rarest tarantulas. 

“This raises a critical question: Are we unintentionally contributing to the destruction of their natural habitats, pushing these unique creatures out of their homes?” the researchers ask in their conclusion.

The post Meet the first electric blue tarantula known to science appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Earth’s stinkiest flower is threatened with extinction https://www.popsci.com/environment/earths-stinkiest-flower-extinction/ Mon, 25 Sep 2023 18:15:00 +0000 https://www.popsci.com/?p=574123
Rafflesia kemumu in the rainforest of Sumatra.
Rafflesia kemumu in the rainforest of Sumatra. Flowers in the Rafflesia genus are some of the world's largest, but also smelliest. Chris Thorogood

Rafflesia, which smells like rotting flesh, is facing habitat loss.

The post Earth’s stinkiest flower is threatened with extinction appeared first on Popular Science.

]]>
Rafflesia kemumu in the rainforest of Sumatra.
Rafflesia kemumu in the rainforest of Sumatra. Flowers in the Rafflesia genus are some of the world's largest, but also smelliest. Chris Thorogood

As their giant petals open, the blooming of flowers in the genus Rafflesia brings with them an overwhelming odor mimics the smell of rotting flesh. While their pungent stink might keep humans away and attract flies, a study published September 19 in the journal Plants People Planet found that 67 percent of the habitats for these notorious plants is at risk of destruction. 

[Related: Corpse flowers across the country are swapping pollen to stay stinky.]

Rafflesia are the largest flowers in the world and have been a botanical enigma for centuries. In addition to their infamous stink, corpse flowers are actually a parasite that infects vines in the tropical jungles of Thailand, Indonesia, Malaysia, Brunei, and the Philippines. It remains hidden from sight for the majority of its lifecycle, existing as a system of tiny thread-like filaments that invades its host. At unpredictable intervals, the parasite produces a cabbage-like bud that will break through a vine’s bark and eventually form a giant, five-lobed flower, up to 3.2 feet across. The flower produces its signature rotten meat smell to attract pollinating flies.

This elusive lifecycle and ability to remain hidden makes them very poorly understood by botanists, and new species are still being discovered by botanists. With such an elusive lifecycle, Rafflesia remains poorly understood, and new species are still being recorded. 

In the study, an international group of researchers established the first coordinated global network to assess the threats facing Rafflesia. This network found most of the 42 known species of Rafflesia are severely threatened, but only one is listed on the IUCN’s Red List of Threatened Species. This leaves many unprotected by regional or national conservation strategies. The scientists classified 25 species as Critically Endangered and 15 as Endangered, according to the IUCN’s criteria for classification

Rafflesia bengkuluensis with its custodians in Sumatra. CREDIT: Chris Thorogood
Rafflesia bengkuluensis with its custodians in Sumatra. CREDIT: Chris Thorogood

Chris Thorogood of the University of Oxford Botanic Garden in England co-authored the study and an upcoming book on the team’s years devoted to documenting these plants. In a statement, Thorogood said that this work, “Highlights how the global conservation efforts geared towards plants–however iconic–have lagged behind those of animals. We urgently need a joined-up, cross-regional approach to save some of the world’s most remarkable flowers, most of which are now on the brink of being lost.”

Additionally, Rafflesia species often have very restricted geographical distributions, making them particularly vulnerable to habitat destruction. Many of the remaining populations of corpse flowers have only a few individuals in unprotected areas that are at risk of being converted for agricultural use, according to the study. While these and other similarly smelly flowers famously exist in some botanical gardens, these institutions have had limited success in breeding them, making habitat conservation an urgent priority.

[Related: These parasitic plants force their victims to make them dinner.]

The four-point action plan proposed by the team for local governments, research centers, and conservation organizations  includes greater habitat protections, better understanding of the full diversity of the Rafflesia that exists to better inform policy making, developing better methods to breed them outside their native habitat, and introducing new ecotourism initiatives to engage local communities in Rafflesia conservation.

The study also highlighted some valuable success stories that may offer important insights for Rafflesia conservation elsewhere, including the Bogor Botanic Garden in West Java, Indonesia, that saw a series of successful blooming events and villagers in West Sumatra benefitting from Rafflesia ecotourism by forming “pokdarwis” or tourism awareness groups linked to social media.

“Indigenous peoples are some of the best guardians of our forests, and Rafflesia conservation programmes are far more likely to be successful if they engage local communities,” Adriane Tobias, a study co-author and forester from the University of the Philippines Los Baños, said in a statement. “Rafflesia has the potential to be a new icon for conservation in the Asian tropics.”

The post Earth’s stinkiest flower is threatened with extinction appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The deepest known ocean virus lives under 29,000 feet of water https://www.popsci.com/environment/deepest-virus/ Mon, 25 Sep 2023 13:30:00 +0000 https://www.popsci.com/?p=573884
A high-density field of corals, including the spiraling Iridogorgia magnispiralis. Image courtesy of the NOAA Office of Ocean Exploration and Research, 2016 Deepwater Exploration of the Marianas.
A high-density field of corals, including the spiraling Iridogorgia magnispiralis. Image courtesy of the NOAA Office of Ocean Exploration and Research, 2016 Deepwater Exploration of the Marianas. NOAA

The newly discovered virus vB_HmeY_H4907 lurks in the Mariana Trench.

The post The deepest known ocean virus lives under 29,000 feet of water appeared first on Popular Science.

]]>
A high-density field of corals, including the spiraling Iridogorgia magnispiralis. Image courtesy of the NOAA Office of Ocean Exploration and Research, 2016 Deepwater Exploration of the Marianas.
A high-density field of corals, including the spiraling Iridogorgia magnispiralis. Image courtesy of the NOAA Office of Ocean Exploration and Research, 2016 Deepwater Exploration of the Marianas. NOAA

Marine virologists have found a novel virus living in the incredibly deep and dark Mariana Trench, more than 29,000 feet under the ocean’s surface. The virus is the deepest known isolated bacteriophage—viruses that infect and replicate inside bacteria—ever found, according to a study published September 20 in the journal Microbiology Spectrum.

[Related: Meet the marine geologist mapping the deepest point on Earth.]

The enormous trench in the western Pacific Ocean near Guam is over 36,000 feet deep at its lowest depth and is part of the hadal zone. This zone is named for Hades, the Greek god of the underworld, for its deep trenches and high pressures. The buildup of carbon along the base of the hadal zone’s trenches may even help regulate the Earth’s climate and carbon cycle. Even in its intense pressures and extreme cold and darkness, life continues to find a way. Scientists have discovered fish, shrimp, and lots of microbes lurking there. That life includes regulators to keep the living things in check. 

“Wherever there’s life, you can bet there are regulators at work. Viruses, in this case,” study co-author and Ocean University of China marine virologist Min Wang said in a statement.

This new phage works by infecting bacteria in the phylum Halomonas, which are commonly found in sediments deep seas and the geyser-like openings on the seafloor that release streams of hot water called hydrothermal vents.

In their study, Wang and an international group of researchers describe the new virus identified as vB_HmeY_H4907. The virus was brought up in sediment from a depth of about 5.5 miles or more than 29,000 feet deep and is classified as a bacteriophage. Also called phage, they infect and replicate inside bacteria and are believed to be the most abundant life forms on Earth.

“To our best knowledge, this is the deepest known isolated phage in the global ocean,” said Wang.

According to Wang, the analysis of the viral genetic material points to the existence of a previously unknown viral family living in the deep ocean and some new insights into the evolution, genetic diversity, genomic features of deep-sea phages and how they interact with their hosts. 

Previously, this team has used metagenomic analysis to study the viruses that infect bacteria in the order Oceanospirallales. This order includes Halomonas, the phylum that this newly discovered virus infects. In this new study, the team searched for viruses in bacterial strains isolated by marine virologist Yu-Zhong Zhang, also from the Ocean University of China. 

[Reading: A deep sea mining zone in the remote Pacific is also a goldmine of unique species.]

The genomic analysis of the new virus suggests that it has a similar structure to its host and is widely distributed in the ocean. It is also lysogenic, meaning it invades and replicates inside its host, but typically does not kill the bacterial cell. The virus’s genetic material is then copied and passed on as the cells divide.

The discovery points to some new questions focused on the survival strategies that viruses living in harsh and generally secluded environments like the hadal zone trenches use and how they co-evolve with their hosts. Future studies also will aim to investigate the molecular machinery driving interactions between deep-sea viruses and their hosts. 

According to Wang, discovering more new viruses in extreme places, “would contribute to broadening our comprehension of the virosphere. Extreme environments offer optimal prospects for unearthing novel viruses.”

The post The deepest known ocean virus lives under 29,000 feet of water appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Nature generates more data than the internet … for now https://www.popsci.com/science/human-nature-data-comparison/ Fri, 22 Sep 2023 19:00:00 +0000 https://www.popsci.com/?p=573562
Internet data server farm with green and pink glowing LED lights
A data server farm in Frankfurt, Germany. By some estimates, the internet is growing at a rate of 26 percent annually. Sebastian Gollnow/picture alliance via Getty Images

In the next century, the information transmitted over the internet might eclipse the information shared between Earth's most abundant lifeforms.

The post Nature generates more data than the internet … for now appeared first on Popular Science.

]]>
Internet data server farm with green and pink glowing LED lights
A data server farm in Frankfurt, Germany. By some estimates, the internet is growing at a rate of 26 percent annually. Sebastian Gollnow/picture alliance via Getty Images

Is Earth primarily a planet of life, a world stewarded by the animals, plants, bacteria, and everything else that lives here? Or, is it a planet dominated by human creations? Certainly, we’ve reshaped our home in many ways—from pumping greenhouse gases into the atmosphere to literally redrawing coastlines. But by one measure, biology wins without a contest.

 In an opinion piece published in the journal Life on August 31, astronomers and astrobiologists estimated the amount of information transmitted by a massive class of organisms and technology for communication. Their results are clear: Earth’s biosphere churns out far more information than the internet has in its 30-year history. “This indicates that, for all the rapid progress achieved by humans, nature is still far more remarkable in terms of its complexity,” says Manasvi Lingam, an astrobiologist at the Florida Institute of Technology and one of the paper’s authors.

[Related: Inside the lab that’s growing mushroom computers]

But that could change in the very near future. Lingam and his colleagues say that, if the internet keeps growing at its current voracious rate, it will eclipse the data that comes out of the biosphere in less than a century. This could help us hone our search for intelligent life on other planets by telling us what type of information we should seek.

To represent information from technology, the authors focused on the amount of data transferred through the internet, which far outweighs any other form of human communication. Each second, the internet carries about 40 terabytes of information. They then compared it to the volume of information flowing through Earth’s biosphere. We might not think of the natural world as a realm of big data, but living things have their own ways of communicating. “To my way of thought, one of the reasons—although not the only one—underpinning the complexity of the biosphere is the massive amount of information flow associated with it,” Lingam says.

Bird calls, whale song, and pheromones are all forms of communication, to be sure. But Lingam and his colleagues focused on the information that individual cells transmit—often in the form of molecules that other cells pick up and respond accordingly, such as producing particular proteins. The authors specifically focused on the 100 octillion single-celled prokaryotes that make up the majority of our planet’s biomass

“That is fairly representative of most life on Earth,” says Andrew Rushby, an astrobiologist at Birkbeck, University of London, who was not an author of the paper. “Just a green slime clinging to the surface of the planet. With a couple of primates running around on it, occasionally.”

Bacteria colony forming red biofilm on black background
This colorized image shows an intricate colony of millions of the single-celled bacterium Pseudomonas aeruginosa that have self-organized into a sticky, mat-like colony called a biofilm, which allows them to cooperate with each other, adapt to changes in their environment, and ensure their survival. Scott Chimileski and Roberto Kolter, Harvard Medical School, Boston

As all of Earth’s prokaryotes signal to each other, according to the authors’ estimate, they generate around a billion times as much data as our technology. But human progress is rapid: According to one estimate, the internet is growing by around 26 percent every year. Under the bold assumption that both these rates hold steady for decades to come, the authors stated its size will continue to balloon until it dwarfs the biosphere in around 90 years’ time, sometime in the early 22nd century.

What, then, does a world where we create more information than nature actually look like? It’s hard to predict for certain. The 2110s version of Earth may be as strange to us as the present Earth would seem to a person from the 1930s. That said, picture alien astronomers in another star system carefully monitoring our planet. Rather than glimpsing a planet teeming with natural life, their first impressions of Earth might be a torrent of digital data.

Now, picture the reverse. For decades, scientists and military experts have sought out signatures of extraterrestrials in whatever form it may take. Astronomers have traditionally focused on the energy that a civilization of intelligent life might use—but earlier this year, one group crunched the numbers to determine if aliens in a nearby star system could pick up the leakage from mobile phone towers. (The answer is probably not, at least with LTE networks and technology like today’s radio telescopes.)

MeerKAT radio telescope dish under starry sky
The MeerKAT radio telescope array in South Africa scans for, among other things, extraterrestrial communication signals from distant stars. MeerKAT

On the flip side, we don’t totally have the observational capabilities to home in on extraterrestrial life yet. “I don’t think there’s any way that we could detect the kind of predictions and findings that [Lingam and his coauthors] have quantified here,” Rushby says. “How can we remotely determine this kind of information capacity, or this information transfer rate? We’re probably not at the stage where we could do that.”

But Rushby thinks the study is an interesting next step in a trend. Astrobiologists—certainly those searching for extraterrestrial life—are increasingly thinking about the types and volume of information that different forms of life carries. “There does seem to be this information ‘revolution,’” he says, “where we’re thinking about life in a slightly different way.” In the end, we might learn that there’s more harmony between the communication networks nature has built and computers.

The post Nature generates more data than the internet … for now appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Pollen could hold clues to mysteries of early human migration https://www.popsci.com/science/pollen-human-migration/ Fri, 22 Sep 2023 18:00:00 +0000 https://www.popsci.com/?p=573514
Yellow pollen spring out from a coniferous tree. The pollen that makes us sneeze every spring, may have helped lay the groundwork for the migration of our very distant ancestors into Eurasia.
The pollen that makes us sneeze every spring, may have helped lay the groundwork for the migration of our very distant ancestors into Eurasia. Deposit Photos

More tree pollen could have led to more Pleistocene-era people living in Eurasia.

The post Pollen could hold clues to mysteries of early human migration appeared first on Popular Science.

]]>
Yellow pollen spring out from a coniferous tree. The pollen that makes us sneeze every spring, may have helped lay the groundwork for the migration of our very distant ancestors into Eurasia.
The pollen that makes us sneeze every spring, may have helped lay the groundwork for the migration of our very distant ancestors into Eurasia. Deposit Photos

There’s a recurring mystery surrounding early human migration: Exactly when did Homo sapiens make their way from Africa into Europe and Asia? It’s possible that a period of warmer temperatures could have contributed to this flow of people into Eurasia, according to a study published September 22 in the journal Science Advances. Warmer temperatures and more humidity may have helped the forests in the region grow and expand north into present-day Siberia. The theory hinges on the presence of pollen in the region’s sediment record. The scourge of modern day spring allergy sufferers could have laid the groundwork for our very distant ancestors’ migration into Eurasia.  

[Related: Humans and Neanderthals could have lived together even earlier than we thought.]

This movement could have begun in three waves into Eurasia about 54,000 years ago. It is also likely that both warm and cold climates would have played a role in this travel. The Pleistocene Epoch is known for huge climatic shifts, including the formation of the massive ice sheets and glaciers that would eventually forge and shape many of the landforms we see on Earth today. 

To piece together what the climate could have looked like during a possible warm period about 45,000 to 50,000 years ago, researchers working on the study created a record of the vegetation and pollen from the Pleistocene found around Lake Baikal in present-day Siberian region of Russia with the oldest archeological traces of Homo sapiens in the area. 

Sediment cores were used to extract data for a pollen timeline, and the study suggests that the dispersal of humans occurred during some of the highest temperatures and highest humidity of the late Pleistocene. The presence of more ancient pollen, and thus plant life, in the record shows evidence that coniferous forests and grasslands may have spread further throughout the region and could support foraging for food and hunting by humans. According to study author and University of Kansas anthropologist Ted Goebel, the environmental data combined with archeological evidence tell a new story of the area. 

“This contradicts some recent archaeological perspectives in Europe. The key factor here is accurate dating, not just of human fossils and animal bones associated with the archaeology of these people, but also of environmental records, including from pollen,” Goebel said in a statement. “What we have presented is a robust chronology of environmental changes in Lake Baikal during this time period, complemented by a well-dated archaeological record of Homo sapiens’ presence in the region.”

A map of theorized migration routes of early Homo sapiens from Africa across Eurasia. CREDIT: Ted Goebel.
A map of theorized migration routes of early Homo sapiens from Africa across Eurasia. CREDIT: Ted Goebel.

Goebel worked with teams from three institutions in Japan, including Masami Izuho of Tokyo Metropolitan University. During the pollen analysis, the team found some potential connections between the pollen data and the archeological record of early human migration into the region. The early modern humans of this period were making stone tools on slender blands and using bones, antlers, and even ivory to craft the tools. 

“There is one human fossil from Siberia, although not from Lake Baikal but farther west, at a place called Ust’-Ishim,” Goebel said. “Morphologically, it is human, but more importantly, it’s exceptionally well-preserved. It has been directly radiocarbon-dated and has yielded ancient DNA, confirming it as a representative of modern Homo sapiens, distinct from Neanderthals or Denisovans, or other pre-modern archaic humans.”

[Related: World’s oldest known wooden structure pre-dates our species.]

It’s possible that the earliest humans in the area likely would have lived in extended nuclear families, but it is difficult to say with certainty since so much archeological evidence has degraded over time. Ust’-Ishim in Siberia provides the earliest known evidence of fully modern humans coexisting with other extinct human species in the area, but the find was an “isolated discovery,” according to the team.

“We lack information about its archaeological context, whether it was part of a settlement or simply a solitary bone washed downstream,” said Goebel. “Consequently, linking that single individual to the archaeological sites in the Baikal region is tenuous—do they represent the same population? We think so, but definitely need more evidence.”

The post Pollen could hold clues to mysteries of early human migration appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These 24-eyed jellyfish learn from their mistakes https://www.popsci.com/environment/jellyfish-learn/ Fri, 22 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=573449
A Caribbean box jellyfish on a black background. It has a round, bell shaped body, with about 11 visible tentacles. It also has four parallel brain-like structures with roughly 1,000 nerve cells in each.
A Caribbean box jellyfish has four parallel brain-like structures with roughly 1,000 nerve cells in each. Jan Bielecki

Instead of a centralized brain, the Caribbean box jellyfish uses four brain-like structures to thrive the ocean.

The post These 24-eyed jellyfish learn from their mistakes appeared first on Popular Science.

]]>
A Caribbean box jellyfish on a black background. It has a round, bell shaped body, with about 11 visible tentacles. It also has four parallel brain-like structures with roughly 1,000 nerve cells in each.
A Caribbean box jellyfish has four parallel brain-like structures with roughly 1,000 nerve cells in each. Jan Bielecki

Jellyfish are an undeniable evolutionary success story, surviving at least 500 million years in Earth’s oceans. They are even poised to handle climate change very well in some areas of the world, all without a centralized brain like most animals. Despite this lack of a central brain, trained Caribbean box jellyfish can potentially remember their past experiences the way that flies, mice, and humans do, and learn to spot and dodge previously encountered obstacles in a tank. The findings are reported in a study published on September 22 in the journal Current Biology.

[Related: Jellyfish may have been roaming the seas for at least 500 million years.]

This species of jellyfish is ubiquitous in the waters of the Caribbean Sea and the central Indo-Pacific Ocean, but are generally just about a half inch in diameter. Box jellyfish like these are members of a class of jellyfish that are known for being among the most poisonous animals in the world and their stings can cause paralysis and even death in extreme cases

To keep up their stinging and navigate their watery world, jellyfish don’t have a centralized brain like most members of the animal kingdom. They have four parallel brain-like structures with roughly 1,000 nerve cells in each. By comparison, a human brain has approximately 100 billion nerve cells. Caribbean box jellyfish are equipped with a complex visual system of 24 eyes embedded into their bell-shaped body. They use this unique vision to steer through the murky waters of mangrove swamps, looking for prey and diving under underwater tree roots. 

“It was once presumed that jellyfish can only manage the simplest forms of learning, including habituation–i.e., the ability to get used to a certain stimulation, such as a constant sound or constant touch,” study co-author and University of Copenhagen neurobiologist Anders Garm said in a statement. “Now, we see that jellyfish have a much more refined ability to learn, and that they can actually learn from their mistakes. And in doing so, modify their behavior.”

In this study, the team used a round tank outfitted with gray and white stripes to mimic the jellyfish’s natural habitat. The gray stripes were mimicking mangrove roots that would appear to be distant at the start of the experiment. For 7.5 minutes, the team observed the jellyfish in the tank. Initially, the jelly swam close to these seemingly far away stripes and bumped into them frequently. However, by the end of the experiment, the jelly increased its average distance to the wall by roughly 50 percent, quadrupled the number of successful pivots to avoid collision with the fake tree, and cut its contact with the wall by half. 

The findings suggest that jellyfish can learn from experience and could acquire the ability to avoid obstacles through a process called associative learning. In this process, organisms form mental connections between sensory stimulations and behaviors

“Learning is the pinnacle [of] performance for nervous systems,” Jan Bielecki, a co-author of the study and a neuroscientist at Kiel University in Germany, said in a statement.

Bielecki added that in order to teach jellyfish a new trick, “it’s best to leverage its natural behaviors, something that makes sense to the animal, so it reaches its full potential.”

[Related: Italian chefs are cooking up a solution to booming jellyfish populations.]

The team then looked into pinpointing the underlying process of jellyfish’s associative learning by isolating the animal’s visual sensory centers called rhopalia. Each rhopalia houses six eyes that control the jellyfish’s pulsing motion. This motion spikes in frequency when the jelly swerves away from an obstacle. 

They showed the stationary rhopalium moving gray bars to mimic how the jelly approaches objects and the rhopalium did not respond to light gray bars, seemingly interpreting the bars as distant. The researchers then trained the rhopalium with some weak electric stimulations that mimicked the mechanical stimuli that occur when colliding with an object. Following the electric stimulation, the rhopalium started to generate obstacle-dodging signals in response to the light gray bars as they got closer. 

The findings from this stage of the experiment showed that combining visual and mechanical stimuli is necessary for associative learning in jellyfish and that the rhopalium is likely serving as the animal’s learning center.

“For fundamental neuroscience, this is pretty big news. It provides a new perspective on what can be done with a simple nervous system,” said Garm. “This suggests that advanced learning may have been one of the most important evolutionary benefits of the nervous system from the very beginning.”

The team plans to do a deeper dive into the cellular interactions of jellyfish nervous systems to tease apart the process of memory formation and also hope to understand how the mechanical sensor in the jellyfish’s body works to paint a more complete picture of its associative learning.

“It’s surprising how fast these animals learn; it’s about the same pace as advanced animals are doing,” says Garm. “Even the simplest nervous system seems to be able to do advanced learning, and this might turn out to be an extremely fundamental cellular mechanism invented at the dawn of the evolution nervous system.”

The post These 24-eyed jellyfish learn from their mistakes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Humans might just love French bulldogs because they remind them of babies https://www.popsci.com/environment/french-bulldogs-why/ Thu, 21 Sep 2023 16:00:00 +0000 https://www.popsci.com/?p=573289
A black and white French bulldog puppy sits in a garden with green grass and orange flowers. In an experiment where dogs had to find food hidden in a box, flat-faced dogs were more likely to look back at people than a breed with a mid-length muzzle.
In an experiment where dogs had to find food hidden in a box, flat-faced dogs were more likely to look back at people than a breed with a mid-length muzzle. Deposit Photos

A small study offers clues on why these pooches are so popular, despite their known health issues.

The post Humans might just love French bulldogs because they remind them of babies appeared first on Popular Science.

]]>
A black and white French bulldog puppy sits in a garden with green grass and orange flowers. In an experiment where dogs had to find food hidden in a box, flat-faced dogs were more likely to look back at people than a breed with a mid-length muzzle.
In an experiment where dogs had to find food hidden in a box, flat-faced dogs were more likely to look back at people than a breed with a mid-length muzzle. Deposit Photos

Earlier this year, the French bulldog replaced the Labrador retriever as the most popular pet dog in the United States. Flat-faced or brachycephalic dogs continue to be a favorite despite their health problems. These include breathing issues like Brachycephalic Obstructive Airway Syndrome (BOAS), an increased risk of heat stroke, and multiple eye issues stemming from aesthetic-based genetic engineering and extreme breeding. In response to these health issues, the Netherlands has banned their breeding on ethical grounds, and the British Veterinary Association has urged people to not buy flat-faced breeds.

[Related: How breeding dogs for certain traits may have altered their brains.]

Cognitive ethologist and behavior biologist Eötvös Loránd University in Hungary Dorottya Júlia Ujfalussy and her team are working on understanding a “paradox phenomenon,” where the number of these flat faced pets continues to increase, despite their known health and longevity issues.

“One reason for choosing a flat-faced pet may be the child-like appearance, however, owner reports suggest that behavior is also involved. We are trying to pinpoint the behavior traits that set these breeds apart from breeds with more healthy head shapes,” Ujfalussy tells PopSci.

In a small study published September 21 in the journal Scientific Reports, Ujfalussy and her team found that these breeds are more likely to look at humans longer and display traits that appear “helpless” and more infant-like to humans. The team assessed the behavior of 15 English bulldogs and 15 French bulldogs compared to the behavior of 13 Hungarian mudis. Mudis are herding dogs with a mid-length muzzle and do not have the bulldogs’ squished face. 

The dogs had to try and open three boxes to retrieve a piece of food. The boxes had different opening techniques that varied in difficulty and they were presented to all of the dogs in a random order. The dogs also saw one of the researchers put a piece of sausage into a box and were then given two minutes to open the box. The team and dog’s owner stood behind the dog and out of direct sight during the experiment. 

A French bulldog successfully opening a box and retrieving the food. CREDIT: Erzsébet Mőbiusz/Marianna Molnár.
A French bulldog successfully opening a box and retrieving the food. CREDIT: Erzsébet Mőbiusz/Marianna Molnár.

English and French bulldogs successfully opened the box 93 percent less often than the mudis did. The successful mudis were also faster than the bulldogs who opened the boxes. By the time one minute had gone by, roughly 90 percent of mudis had opened the box, compared to about 50 percent of the bulldogs. However, the bulldogs were 4.16 and 4.49 times as likely to look back at their people than mudis.

“The most surprising was the extent of the helplessness, lack of success and visual orientation of dogs to the owners,” Ujfalussy says. “It seemed like they were depending on their humans to solve problems for them much more than your typical family dogs.”

The team believes that these findings show that short-faced dogs seek out humans when faced with problems more frequently, which may promote a stronger social relationship between the owners and their dogs due to this perception of helplessness. 

[Related: Dogs and wolves remember where you hide their food.]

The study could not establish whether flat-faced dogs are actually genetically predisposed to look more dependent on humans than other dog breeds or whether  owners’ attitudes towards flat-faced dogs encourages dependent behavior. The team is working to continue to study these behavior characteristics.

“We would like to raise awareness of this ‘flat-faced’ paradox in the hope that people make more conscious choices of pets, not relying on their instincts and falling for the ‘cute looks’ and dependent (helpless) behavior that reminds them of human children,” says Ujfalussy.

The post Humans might just love French bulldogs because they remind them of babies appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These parasitic plants force their victims to make them dinner https://www.popsci.com/science/parasitic-plants-force-hosts-to-grow/ Thu, 21 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=573243
Multiple reddish pink parasitic plants called balanophora growing in a forest. Balanophora shed one third of its genes as it evolved into a very streamlined parasitic plant.
Balanophora shed one third of its genes as it evolved into a very streamlined parasitic plant. Ze Wei/Plant Photo Bank of China/Nature Plants

Two parasitic plants in a new study are losing genes related to photosynthesis and other plant functions as they continue their food-sucking habits.

The post These parasitic plants force their victims to make them dinner appeared first on Popular Science.

]]>
Multiple reddish pink parasitic plants called balanophora growing in a forest. Balanophora shed one third of its genes as it evolved into a very streamlined parasitic plant.
Balanophora shed one third of its genes as it evolved into a very streamlined parasitic plant. Ze Wei/Plant Photo Bank of China/Nature Plants

Parasitic plants make up about 1 percent of flowering species within the plant kingdom and their quirks and tricks continue to come with surprises. Some parasitic plants are now potentially evolving to be so dependent on their host plants, that they are losing sizable amounts of genomes related to basic biological processes like photosynthesis. The findings are described in a study published September 21 in the journal Nature Plants.

[Related: How a peculiar parasitic plant relies on a rare Japanese rabbit.]

Plants in the Balanophoraceae family that are found in tropical and temperate regions in Asia and tropical Africa generally resemble fungi growing around the roots of trees in the forest, but there is a lot more than meets the eye. The structures that look like mushrooms are instead inflorescences, or a cluster of flowers intricately arranged on a stem.  

However, unlike other parasitic plants that extend a skinny projection called a haustorium into a host’s tissue to steal its nutrients, plants in the Balanophora genus actually induce their host plant’s vascular system to grow into a tuber to store nutrients. This forms a unique underground organ made from tissue of both the host plant that Balanophora then uses to eat..

To learn more about how these subtropical extreme parasitic plants evolved into this unique form, a team from the Beijing Genomics Institute (BGI) and the University of British Columbia compared Balanophora’s genomes with another parasitic plant genus called Sapria that has a very different vegetative body. Sapria are members of the family Rafflesiaceae, including some very smelly corpse flowers, and can generally be found in tropical forests of Asia.

The study found that Sapria has lost 38 percent of its genomes and Balanophora has lost 28 percent of their genomes over time, while evolving their parasitic behaviors, which the authors say is a record genetic shrinking for flowering plants.

A reddish pink parasitic plant grows from a root system. Balanophora is a parasitic plant found in tropical and temperate regions in Asia and tropical Africa and generally resembles fungi growing around the roots of trees in the forest.
Balanophora is a parasitic plant found in tropical and temperate regions in Asia and tropical Africa and generally resembles fungi growing around the roots of trees in the forest. CREDIT: Xiaoli Chen/BGI Research/Nature Plants.

“The extent of similar, but independent gene losses observed in Balanophora and Sapria is striking,” study co-author and BGI Research plant geneticist Xiaoli Chen said in a statement. “It points to a very strong convergence in the genetic evolution of holoparasitic lineages, despite their outwardly distinct life histories and appearances, and despite their having evolved from different groups of photosynthetic plants.”

They found that both Balanophora and Sapria have even lost almost all of the genes associated with photosynthesis and other key biological processes, including nitrogen absorption, root development, and the regulation of flower development. 

“The majority of the lost genes in Balanophora are probably related to functions essential in green plants, which have become functionally unnecessary in the parasites,” study co-author and University of British Columbia botanist Sean Graham said in a statement.

[Related: We’re finally figuring out how plants pass on genetic memories.]

Since these parasitic plants don’t necessarily need to rely on sunlight and water to make food through photosynthesis and instead use the resources of their host plants, they appear to be losing those genes. 

Notably, the genes related to the synthesis of a major hormone responsible for plant stress responses and signaling called abscisic acid (ABA) have also been lost in Balanophora and Sapria. Even with the loss, the team still recorded a build up of the ABA hormone in Balanophora’s flowering stems and saw that genes involved in the response to ABA signaling are still retained in the parasites. According to the team, this gene loss could be beneficial to the plant. 

“The loss of their entire ABA biosynthesis pathway may be a good example. It may help them to maintain physiological synchronization with the host plants,” said Graham. “This needs to be tested in the future.”

The team says that this study deepens the major genomic alterations occurring within parasitic plants and is important in the context of a project working to sequence the genomes of 10,000 plant species called 10KP.

The post These parasitic plants force their victims to make them dinner appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
As humans get louder, monkeys mark more territory https://www.popsci.com/environment/monkeys-more-smells/ Thu, 21 Sep 2023 12:30:00 +0000 https://www.popsci.com/?p=573006
A pied tamarin monkey sits on a large rope. Pied tamarin monkeys live in a small geographic range in Brazil, where they eat fruits, flowers, and various tree gums and saps.
Pied tamarin monkeys live in a small geographic range in Brazil, where they eat fruits, flowers, and various tree gums and saps. Jacob Dunn/Anglia Ruskin University

Brazil’s pied tamarin monkeys use scent marking and vocal calls to communicate, but it’s getting more difficult for them to hear one another.

The post As humans get louder, monkeys mark more territory appeared first on Popular Science.

]]>
A pied tamarin monkey sits on a large rope. Pied tamarin monkeys live in a small geographic range in Brazil, where they eat fruits, flowers, and various tree gums and saps.
Pied tamarin monkeys live in a small geographic range in Brazil, where they eat fruits, flowers, and various tree gums and saps. Jacob Dunn/Anglia Ruskin University

In an increasingly noisy world, some primates are pushing to be noticed with another sense. A study published September 20 in the journal Ethology Ecology & Evolution found that pied tamarin monkeys use scent markings to communicate more often so they can compensate for noise pollution generated by humans. 

[Related: Noise pollution messes with beluga whales’ travel plans.]

Pied tamarins are 11 to 12 inch long monkeys with furry bodies and bare faces. The species is currently listed as Critically Endangered by the IUCN. They live in a very narrow geographic range in central Brazil. Most of their territory now lies within the city of Manaus, a port city of about 2.6 million residents. The expansion of the city has restricted individual groups of monkeys to small patches that are surrounded by noisy urban spaces. 

Communicating with other groups of monkeys is crucial for their survival, so in addition to long vocal calls, pied tamarins use multiple types of scent markings to send messages. The scent markings have different functions, including passing along territorial and reproductive information. Pied tamarins have special glands above their genitals and near their stomachs that emit these scents that leave behind an olfactory message to other monkeys. This practice is also not unique to pied tamarins. Domestic and wild felines can use their famously pungent spray to mark territory, as do dogs and red pandas to name a few other mammals.

In the new study, a team from the Universidade Federal do Amazonas in Brazil and Anglia Ruskin University in England looked at the behavior of nine separate groups of wild pied tamarins. They followed each group for 10 days using radio tracking and the most common source of anthropogenic noise was road traffic. There was also noise pollution from park visitors, aircraft, and military activity.

The team found that the frequency of scent marking directly increased with decibel levels, which suggests that scent marking is being used more frequently as their vocal communication becomes more drowned out by human noise. 

“Many species depend on acoustic signals to communicate with other members of the same species about essential information such as foraging, mate attraction, predators, and territorial defense,” study co-author and Universidade Federal do Amazonas biologist Tainara Sobroza said in a statement

Their long vocal calls are generally used to mark territory and for communications between members of the group. In Manaus, they are important since the forest landscape is fragmented and urban areas are encroaching on their territory. The authors believe that this increase in scent marking is directly tied to this increase in urbanization. 

[Related from PopSci+: Why your dog needs to smell the world.]

“Humans have contributed many additional stimuli to the soundscapes that animals have evolved to deal with, and anthropogenic noise is increasingly drowning out natural sounds,” study co-author and Anglia Ruskin University behavioral ecologist Jacob Dunn said in a statement. “The increased use of scent marking by pied tamarins is likely to be a flexible response towards this environmental change. This is an interesting result from a conservation perspective as it shows pied tamarins are adapting their behavior in response to city noise.

One of the advantages scent marking has over vocal communication is that the information can be passed on over several days, instead of just after making a call. On the other hand, vocal calls are a better way of communicating over long distances. 

“As the pied tamarins’ range is becoming more fragmented and groups are becoming more isolated, this could potentially have a detrimental impact on a species which is already critically endangered,” said Dunn.

The post As humans get louder, monkeys mark more territory appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This parasite deploys mucus slime balls to make ‘zombie ants’ https://www.popsci.com/science/parasite-zombie-ants/ Tue, 19 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=572374
A dissected ant and where you can see the encapsulated parasites (white oval structures) spilling out of the hind body.
A dissected ant and where you can see the encapsulated parasites (white oval structures) spilling out of the hind body. Brian Lund Fredensborg

A new study finds that lancet liver flukes may be using air temperature to their infection advantage.

The post This parasite deploys mucus slime balls to make ‘zombie ants’ appeared first on Popular Science.

]]>
A dissected ant and where you can see the encapsulated parasites (white oval structures) spilling out of the hind body.
A dissected ant and where you can see the encapsulated parasites (white oval structures) spilling out of the hind body. Brian Lund Fredensborg

Just in time for spooky season, scientists have learned more about how a tiny parasitic flatworm called the lancet liver fluke infects and controls the brains of ants. With their complex four-step cycle, the flukes could be cunningly adjusting to daily changes in air temperatures to infect more hosts. The findings were recently published in the journal Behavioral Ecology.

[Related: Mind-controlling ‘zombie’ parasites are real.]

Step 1: The Zombie Ant

The parasite hijacks an ant’s brain after an ant eats a ball of snail mucus infested with fluke larvae. The larvae then mature inside the brain, where the parasite can make the ant climb up a blade of grass and clamp down on the blade. This strategic height makes it easier for the parasite’s next potential host—a cow, sheep, deer, or other grazer—to eat the flukes and offer it another place to live and breed. This new study found that the liver fluke can even get the ant to crawl back down the blade of grass when it gets too hot.

“Getting the ants high up in the grass for when cattle or deer graze during the cool morning and evening hours, and then down again to avoid the sun’s deadly rays, is quite smart. Our discovery reveals a parasite that is more sophisticated than we originally believed it to be,” University of Copenhagen biologist and study co-author Brian Lund Fredensborg said in a statement. Fredensborg conducted the research with his former graduate student Simone Nordstrand Gasque, now a PhD student at Wageningen University in the Netherlands.

In their study, the team tagged several hundred infected ants in the Bidstrup Forests near Roskilde, Denmark. “It took some dexterity to glue colors and numbers onto the rear segments of the ants, but it allowed us to keep track of them for longer periods of time,” said Fredensborg.

The team observed how the infected ants behaved to humidity, light, time of day, and temperature and it was clear that temperature has an effect on their behavior. During cooler temperatures, the ants were more likely to be attached to the top of a blade of grass. When the temperature rose, the ants let go of the grass and crawled back down. 

“We found a clear correlation between temperature and ant behavior,” said Fredensborg. “We joked about having found the ants’ zombie switch,’”

Step 2: The Grazer

Once the liver fluke infects the ant, several hundred parasites invade the insect’s body. Only one of these parasites will make it to the brain where it then influences the ant’s behavior. The remaining liver flukes conceal themselves in the ant’s abdomen inside of its intestine. There, the liver flukes find their way through the bile ducts and into the liver, where they suck blood and develop into adult flukes that begin to lay eggs. 

[Related: ‘Brainwashing’ parasites inherit a strange genetic gap.]

“Here, there can be hundreds of liver flukes waiting for the ant to get them into their next host. They are wrapped in a capsule which protects them from the consequent host’s stomach acid, while the liver fluke that took control of the ant, dies. You could say that it sacrifices itself for the others,” said Fredensborg. 

The eggs are then excreted in the host animal’s feces.

Step 3: The Snail

Once the fluke eggs have been excreted, they remain on the ground waiting for a snail to crawl by and eat the feces. When the eggs are inside the snail, the eggs develop into larval flukes that reproduce asexually and can multiply into several thousand. 

“Historically, parasites have never really been focused on that much, despite there being scientific sources which say that parasitism is the most widespread life form,” said Fredensborg. “This is in part due to the fact that parasites are quite difficult to study.”

Step 4: The Slime Ball

To exit the snail and move on to their next host, the larval flukes make the snail cough. The flukes are then expelled from the snail in a lump of mucus. The ants are attracted to this moist ball, eat it, and unwittingly ingest more fluke larvae and the cycle begins all over again.

The tiny liver fluke is widespread in Denmark and other temperate regions around the world and researchers are still trying to understand more of the mechanisms behind how they take over a host’s brain. 

“We now know that temperature determines when the parasite will take over an ant’s brain. But we still need to figure out which cocktail of chemical substances the parasite uses to turn ants into zombies,” Fredensborg said. “Nevertheless, the hidden world of parasites forms a significant part of biodiversity, and by changing the host’s behavior, they can help determine who eats what in nature. That’s why they’re important for us to understand.”

The post This parasite deploys mucus slime balls to make ‘zombie ants’ appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
World’s oldest living aquarium fish could be 100 years young https://www.popsci.com/science/worlds-oldest-living-aquarium-fish/ Tue, 19 Sep 2023 14:00:00 +0000 https://www.popsci.com/?p=572229
An Australian lungfish named Methuselah swims in a tank at the Steinhart Aquarium. The fish has a flat snout, olive-green scales, and a long torpedo-shaped body.
Australian lungfish like Methuselah are native to only to two river systems in Australia and they can use a single lung to breathe air. Gayle Laird/California Academy of Sciences

New DNA analysis reveals that Methuselah the Australian lungfish is even further along in years than scientists previously believed.

The post World’s oldest living aquarium fish could be 100 years young appeared first on Popular Science.

]]>
An Australian lungfish named Methuselah swims in a tank at the Steinhart Aquarium. The fish has a flat snout, olive-green scales, and a long torpedo-shaped body.
Australian lungfish like Methuselah are native to only to two river systems in Australia and they can use a single lung to breathe air. Gayle Laird/California Academy of Sciences

The world’s oldest living aquarium fish is actually even older than scientists initially believed. According to an analysis by the California Academy of Sciences, the Steinhart Aquarium’s beloved Australian lungfish named Methuselah is estimated to be about 92 years old, with a high-estimate of over 100.

[Related: Hogfish ‘see’ using their skin.]

Meet Methuselah

Native only to two river systems in Australia, this type of lungfish can actually breathe air. They use a single lung when the streams they live in are more dry than usual or when the water quality changes, according to the Australian Museum. They typically have olive green, black, or brown scales and a body shaped like a torpedo with a flattened snout. While the species is over 100 million years old, they are listed as Endangered on the IUCN Red List. They are very sensitive to human-caused changes to its habitat, primarily damming, that can increase sediment levels in the water. 

CREDIT: California Academy of Sciences.

Methuselah first arrived at the San Francisco aquarium in 1938, aboard a Matson Navigation Company liner. She has outlived the 231 other fish from Australia and Fiji that arrived with her, back when Franklin D. Roosevelt was in his second term as President of the United States and Back to the Future’s Christopher Llloyd was only a baby. 

In the many decades since, Methuselah has become famous in the area for not only her advanced age, but a seemingly charming personality and a puppy-like love of belly rubs. The knowledge of her age is helpful in the context of a larger study on how to more accurately determine the age of lungfish in the wild and help conservation efforts. She was previously estimated to be about 84 years old.

“Although we know Methuselah came to us in the late 1930s, there was no method for determining her age at that time, so it’s incredibly exciting to get science-based information on her actual age,” Steinhart Aquarium’s Curator of Aquarium Projects Charles Delbeek, said in a statement. “Methuselah is an important ambassador for her species, helping to educate and stoke curiosity in visitors from all over the world. But her impact goes beyond delighting guests at the aquarium: Making our living collection available to researchers across the world helps further our understanding of biodiversity and what species need to survive and thrive.”

[Related: Trumpetfish use other fish as camouflage.]

How scientists determined the age of the oldest living aquarium fish

Estimating ages for ancient and long-lived fish like lungfish is technically challenging and has traditionally relied on more invasive and sometimes lethal methods to determine the age of fishes, including removing scales and examining inner ear bones called otoliths. The new age detection method used to estimate Methuselah’s age only uses a small tissue sample from a fin clip and the team believed that this method can be applied to other threatened species, without impacting threatened populations or the animal’s health.

The DNA analysis for this new estimate was led by Ben Mayne of Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) and David T. Roberts of Australian water authority Seqwater. Their upcoming study included Methuselah, two other lungfish belonging to the California Academy of Sciences (ages 54 and 50), and 30 other lungfish from six institutions in Australia and the United States. It created a catalog of living lungfish with the goal of advancing more accurate DNA-based age clocks for the species native to Australia.  This new analysis also found that she could be as old as 101.

“For the first time since the Australian lungfish’s discovery in 1870, the DNA age clock we developed offers the ability to predict the maximum age of the species,” said Mayne. “Accurately knowing the ages of fish in a population, including the maximum age, is vital for their management. This tells us just how long a species can survive and reproduce in the wild, which is critical for modeling population viability and reproductive potential for a species.”

Their original paper detailing how this age prediction method works was published in June 2021 in the journal Molecular Ecology Resources and offers a description of how threatened fish can be safely aged with DNA methylation methods.

“Methuselah’s age was challenging to calculate as her age is beyond the currently calibrated clock. This means her actual age could conceivably be over 100, placing her in the rare club of fish centenarians. While her age prediction will improve over time, she will always live beyond the calibrated age clock, as no other lungfish we know is older than Methuselah,” said Roberts.

The post World’s oldest living aquarium fish could be 100 years young appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
‘Jet lag’ could be messing with pandas’ natural mating behaviors https://www.popsci.com/environment/giant-pandas-jet-lag/ Mon, 18 Sep 2023 17:00:00 +0000 https://www.popsci.com/?p=571738
A giant panda eats a green plant.
Giant pandas in the wild and captivity show three activity peaks in 24 hours, including one peak during nighttime hours. Deposit Photos

Giant pandas living in zoos outside of their original latitudinal range might be missing out on environmental cues.

The post ‘Jet lag’ could be messing with pandas’ natural mating behaviors appeared first on Popular Science.

]]>
A giant panda eats a green plant.
Giant pandas in the wild and captivity show three activity peaks in 24 hours, including one peak during nighttime hours. Deposit Photos

Jet lag isn’t just an unpleasant side effect of travel for humans. It could also affect the internal circadian clock of captive giant pandas living outside of their natural habitat range in China. A study published September 18 in the journal Frontiers in Psychology found that outdoor cues like changes in temperature and daylight are particularly important for giant pandas. Some problems can arise when their environments and natural body clock don’t match up. 

[Related: Pandas weren’t always bamboo fiends.]

Animals’ internal circadian clocks are generally regulated by cues from the environment and are linked to changes in their behavior and physiology. For humpback whales in the North Atlantic, the decrease in the daylight around the autumnal equinox likely signals that it’s time for the whales to migrate south to their breeding grounds in the Caribbean. Several species of migratory birds use variation in temperature to time their migrations and delaying their departures may help them navigate climate change, but at a cost. 

“Animals, including humans, have evolved rhythms to synchronize their internal environment with the external environment,” University of Stirling PhD student and study co-author Kristine Gandia said in a statement. “When internal clocks are not synchronized with external cues like light and temperature, animals experience adverse effects. In humans, this can range from jet lag to metabolic issues and seasonal affective disorder.” 

For the pandas in this study, those living outside of their latitudinal ranges were observed performing fewer activities than they would in the wild and responding to some human-based cues that only exist in captivity. 

Giant pandas in the wild live highly seasonal lives, where spring is time for migrations to find new shoots of their preferred bamboo. Migration season is also mating season, possibly because finding mates is easier when pandas are all after the same bamboo shoots. Pandas are also a favorite in zoos around the world and their public webcams make them easier to observe. 

In this new study, scientists set out to understand how pandas in zoos are affected by the “jet lag” of living in latitudes they did not evolve in, since important conditions such as daylight and temperature ranges will be different in these areas. According to Gandia, the latitudinal range for giant pandas is between 26 and 42 degrees north and matching latitudes could be between 26 and 42 degrees south, since these latitudes mirror the temperature and lighting conditions further north. Other latitudes will have different amounts of sunlight and varying temperatures, which could alter the panda’s internal clocks and changes to their behaviors, such as, looking for a mate. The study also looked at whether or not anthropogenic cues like regular visits from keepers could also affect their circadian clock. 

The team of 13 observers used webcams to monitor 11 giant pandas born in captivity at six zoos both inside and outside pandas’ natural latitudinal range. Every month for one year, they carried out one day’s worth of hourly focal sampling–watching one animal for a set length of time and recording everything the animal does–to see how their behavior changed across a day and how that changed across a year. The observers noted general activity, sexual behavior, and abnormal behavior.

Daylight and temperature changes were particularly important cues for pandas and were closely associated with general activity in latitudes that matched their natural range in China. Just like their wild counterparts, pandas in captivity showed three peaks of activity over 24 hours, including a peak at night. Sexual behaviors were only displayed by adult pandas during the day, which possibly makes it easier to find mates in the wild.

[Related: The science behind our circadian rhythms, and why time changes mess them up.]

The pandas living outside their home latitude were less active, correlating to the different temperature and daylight cues in these newer latitudes. 

“When giant pandas are housed at higher latitudes—meaning they experience more extreme seasons than they evolved with—this changes their levels of general activity and abnormal behavior,” said Gandia. One of the abnormal behaviors included reacting to zoo-specific cues, such as becoming very active during the early morning. This indicates that the pandas may be anticipating a keeper visiting with fresh food.  

Additionally, the pandas’ abnormal and sexual behaviors fluctuated at similar points. The team believes that this could represent frustration that the pandas can’t mate or migrate in captivity as they would in the wild. The pandas living in mismatched latitudes performed fewer abnormal behaviors related to mating, potentially because they weren’t getting the same environmental cues for sexual behaviors.

“To expand on this research, we would want to incorporate cycles of physiological indicators,” said Gandia. “Importantly, we would want to assess sexual hormones to understand the effects the environment may have on the timing of release. This could help us further understand how to promote successful reproduction for a vulnerable species which is notoriously difficult to breed.”

The post ‘Jet lag’ could be messing with pandas’ natural mating behaviors appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Can animals give birth to twins? https://www.popsci.com/environment/can-animals-give-birth-to-twins/ Fri, 15 Sep 2023 22:00:00 +0000 https://www.popsci.com/?p=570710
Some animals, including goats, regularly give birth to two babies at once.
Some animals, including goats, regularly give birth to two babies at once. DepositPhotos

For many animal species it’s the norm to have multiple babies at once.

The post Can animals give birth to twins? appeared first on Popular Science.

]]>
Some animals, including goats, regularly give birth to two babies at once.
Some animals, including goats, regularly give birth to two babies at once. DepositPhotos

This article is republished from The Conversation.

Ask any parent—welcoming a new baby to the family is exciting, but it comes with a lot of work. And when the new addition is a pair of babies—twins—parents really have their work cut out for them.

For many animal species it’s the norm to have multiple babies at once. A litter of piglets can be as many as 11 or more!

We are faculty members at Mississippi State University College of Veterinary Medicine. We’ve been present for the births of many puppies and kittens over the years—and the animal moms almost always deliver multiples.

But are all those animal siblings who share the same birthday twins?

Twins are two peas in a pod

Twins are defined as two offspring from the same pregnancy.

They can be identical, which means a single sperm fertilized a single egg that divided into two separate cells that went on to develop into two identical babies. They share the same DNA, and that’s why the two twins are essentially indistinguishable from each other.

Twins can also be fraternal. That’s the outcome when two separate eggs are fertilized individually at the same time. Each twin has its own set of genes from the mother and the father. One can be male and one can be female. Fraternal twins are basically as similar as any set of siblings.

diagram of two sperm fertilizing two eggs yielding two embryos, and one sperm fertilizing one egg that divides into two separate embryos

Fraternal twins originate in two eggs fertilized separately, while identical twins originate in a single fertilized egg that divides to create two embryos. Veronika Zakharova/Science Photo Library via Getty Images

Approximately 3 percent of human pregnancies in the United States produce twins. Most of those are fraternal – approximately one out of every three pairs of twins is identical.

Multiple babies from one animal mom

Each kind of animal has its own standard number of offspring per birth. People tend to know the most about domesticated species that are kept as pets or farm animals.

One study that surveyed the size of over 10,000 litters among purebred dogs found that the average number of puppies varied by the size of the dog breed. Miniature breed dogs—like chihuahuas and toy poodles, generally weighing less than 10 pounds (4.5 kilograms)—averaged 3.5 puppies per litter. Giant breed dogs—like mastiffs and Great Danes, typically over 100 pounds (45 kilograms)—averaged more than seven puppies per litter.

When a litter of dogs, for instance, consists of only two offspring, people tend to refer to the two puppies as twins. Twins are the most common pregnancy outcome in goats, though mom goats can give birth to a single-born kid or larger litters, too. Sheep frequently have twins, but single-born lambs are more common.

Horses, which are pregnant for 11 to 12 months, and cows, which are pregnant for nine to 10 months, tend to have just one foal or calf at a time—but twins may occur. Veterinarians and ranchers have long believed that it would be financially beneficial to encourage the conception of twins in dairy and beef cattle. Basically the farmer would get two calves for the price of one pregnancy.

But twins in cattle may result in birth complications for the cow and undersized calves with reduced survival rates. Similar risks come with twin pregnancies in horses, which tend to lead to both pregnancy complications that may harm the mare and the birth of weak foals.

DNA holds the answer to what kind of twins

So plenty of animals can give birth to twins. A more complicated question is whether two animal babies born together are identical or fraternal twins.

Female dogs and cats ovulate multiple eggs at one time. Fertilization of individual eggs by distinct spermatazoa from a male produces multiple embryos. This process results in puppies or kittens that are fraternal, not identical, even though they may look very much the same.

Biologists believe that identical twins in most animals are very rare. The tricky part is that lots of animal siblings look very, very similar and researchers need to do a DNA test to confirm whether two animals do in fact share all their genes. Only one documented report of identical twin dogs was confirmed by DNA testing. But no one knows for sure how frequently fertilized animal eggs split and grow into identical twin animal babies.

And reproduction is different in various animals. For instance, nine-banded armadillos normally give birth to identical quadruplets. After a mother armadillo releases an egg and it becomes fertilized, it splits into four separate identical cells that develop into identical pups. Its relative, the seven-banded armadillo, can give birth to anywhere from seven to nine identical pups at one time.

There’s still a lot that scientists aren’t sure about when it comes to twins in other species. Since DNA testing is not commonly performed in animals, no one really knows how often identical twins are born. It’s possible—maybe even likely—that identical twins may have been born in some species without anyone’s ever knowing.


Michael Jaffe is an associate professor of small animal surgery at Mississippi State University. Tracy Jaffe is an assistant clinical professor of veterinary medicine at Mississippi State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The post Can animals give birth to twins? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why your pet might need a glucose monitor https://www.popsci.com/health/glucose-monitor-pets/ Fri, 15 Sep 2023 18:00:00 +0000 https://www.popsci.com/?p=570547
A beagle running through grass.
About 1 in 300 dogs and cats are diagnosed with diabetes. Depositphotos

Tracking blood sugar could make life easier for pets with diabetes, while helping vets and owners.

The post Why your pet might need a glucose monitor appeared first on Popular Science.

]]>
A beagle running through grass.
About 1 in 300 dogs and cats are diagnosed with diabetes. Depositphotos

The small medical sensors known as continuous glucose monitors, or CGMs, were first developed to track the blood sugar levels of people with diabetes. But they have recently expanded to several other uses—they’re not just for humans anymore. Veterinarians are repurposing the devices to monitor their furry patients and help regulate diabetes with medication. 

Diabetes is fairly common in dogs and cats, occurring in about 1 in 300 patients. The biggest problem with this disease in pets isn’t its scale, though, but the burden of care, says Chen Gilor, a veterinarian and diabetes specialist at the University of Florida. Animals with diabetes require daily medication such as insulin, which needs regular monitoring to get the doses right. 

That can be tricky for vets and owners. “The question is, how do you make it easier?” says Gilor, who researches veterinary diabetes and has worked with several pharmaceutical companies that manufacture diabetes products. CGMs, he says, might offer a better alternative.

Traditionally, veterinarians measure blood sugar levels in pets using a technique called glucose curves, in which vets periodically take blood samples over roughly 12 hours and manually plot the data. The labor-intensive tool may not give an accurate picture of typical glucose levels because situations that cause anxiety in pets, like going to the vet, skew blood sugar

“It’s stressful. It’s expensive. And, the biggest problem is: It’s a lot of variability,” says Catharine Scott-Moncrieff, a veterinarian at Purdue University who specializes in small animal endocrinology. Blood sugar varies daily, so it’s difficult for vets to make treatment decisions based on just a few hours of data. Because CGMs measure glucose levels every few minutes, they can give vets a better sense of fluctuations and daily averages. 

[Related: Declawing cats is harmful. Do this instead.]

The monitors consist of two main parts: an electrode coated in enzymes, which is inserted under the skin with a guide needle, and an inch-long sensor, adhered to a shaved patch of skin on a pet’s upper back. Rather than directly reading blood sugar, the electrode measures glucose in interstitial fluid—the liquid surrounding the body’s cells—which slightly lags behind changes in blood. Veterinarians usually place the devices in their office and then send their patients home, where the CGMs collect data, transmitted to a smartphone or monitor via Bluetooth.

The sensors typically last up to two weeks—if they aren’t scratched off before then. (Even if a pet yanks out the device in this way, the electrodes are too thin to cause any harm.) Gilor says that while dogs tend not to mind the devices, cats are less tolerant. More finicky patients may have to wear jackets to prevent this preemptive removal. 

Continuous glucose monitors make it easier for vets and owners to care for pets with diabetes.
Continuous glucose monitors make it easier for vets and owners to care for pets with diabetes. Linda Fleeman/Animal Diabetes Australia

CGMs are most useful initially for determining insulin dosages, especially for newly diagnosed patients, says Scott-Moncrieff. Then, vets can apply a new CGM every few months to check in and see whether adjustments are needed.

Gilor also highlights the efficiency of regulating his patients’ diabetes with the monitors. While it might take months to regulate a dog or cat with glucose curves, he says vets can adjust insulin to the right levels in a matter of weeks when using a CGM. 

Although the devices are becoming common in veterinary practices, animal-specific devices are not currently available on the market. Instead, vets prescribe human CGMs off-label. Abbott’s Freestyle Libre is most popular, says Scott-Moncrieff. Without insurance, the newest version retails at about $75 per sensor. (By comparison, a glucose curve may cost owners well more than $100.)

Several studies of the Freestyle Libre in dogs and cats found the device reliably measured normal and high blood sugar levels, though it showed more variation for animals with low blood sugar. Additional studies are evaluating newer versions of the monitor, which is already in its third generation. “You really have to stay up to date on the technology, because it’s always changing,” says Scott-Moncrieff.

Despite its promise, using this human technology for pets comes with some hurdles. For example, the adhesive isn’t intended for animal skin, so vets often use extra, which can sometimes cause irritation. 

[Related: Should pets wear Halloween costumes? Your furry friend can help you decide.]

One diabetes management company, ALR Technologies, is developing a CGM specifically for cats and dogs. It decided to expand into the animal health space after noticing a lack of tools for veterinarians. “They’re just in such a need for a better way to check blood sugar,” says Joe Stern, who heads ALR’s animal health division.

The device, called GluCurve, uses a pet-friendly adhesive and applicator. Its software, which includes a specialized dose calculator for insulin treatment, is designed to share data across a veterinary practice. GluCurve was soft-launched in January and is now off the market while the company modifies the hardware design. It plans to begin selling the product again in the next few months, according to Stern. 

Monitoring blood sugar with any type of CGM requires involvement from a pet’s owner and veterinarian, and it often falls to vets to teach themselves and their clients how to use the tech. “It can be quite intense for veterinarians to have to manage all this additional information. There’s always a downside to technology,” says Scott-Moncrieff, which in this case is mostly time and education. Fluctuations in blood sugar are normal—but concerned owners might need reassurance. She also emphasizes that it’s important for owners to consult with vets before making any treatment decisions. With that in mind, Scott-Moncrieff says, “it’s really powerful technology.” 

The post Why your pet might need a glucose monitor appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What songbirds can teach us about being smart https://www.popsci.com/science/intelligence-songbirds-vocal-learning/ Thu, 14 Sep 2023 18:00:00 +0000 https://www.popsci.com/?p=570465
A gray tufted titmouse perches on a scientist's hand.
A songbird called a tufted titmouse, commonly found in eastern North America forests. Mélanie Couture

Behavioral scientists found a relationship between styles of bird learning and problem solving.

The post What songbirds can teach us about being smart appeared first on Popular Science.

]]>
A gray tufted titmouse perches on a scientist's hand.
A songbird called a tufted titmouse, commonly found in eastern North America forests. Mélanie Couture

What does it mean to be intelligent? If it’s defined by having the biggest brain, then sperm whales—whose noggins are a hefty 20 pounds—would be the brightest creatures on Earth. But, more likely, it’s how a brain is wired. Viewed in this way, intelligence is what gives an organism the best chance to survive and thrive in an environment. Language may be one of the best ways to demonstrate that kind of smarts. 

Though all animals can communicate with others, humans are one of the few species to have a spoken language. Using speech, we could share complex ideas, pass knowledge through generations, and create communities. Whether spoken language actually helped us evolve as species into more advanced beings, however, has never really been tested.

“Language allowing humans to be a more advanced species is an assumption that somebody came up with one day without really trying [to prove] it,” says Erich Jarvis, a professor at Rockefeller University who studies the neurobiology of vocal learning. The idea stuck around, but so have other common beliefs that are not really supported with evidence—like the myth that we only use 10 percent of our brains at any point in time, he points out. 

But Jarvis and his colleagues were able to examine this hypothesis with the help of songbirds. Jarvis’ new study, published today in Science, provides some of the first evidence that vocal learning—one of the crucial components for a spoken language—is associated with problem-solving. Vocal learning is the ability to produce new sounds by imitating others, relying on experience rather than instinct. Birds who could do this and solve problems had bigger brain sizes, the research team found.

“Learning new sequences of sounds helps to successfully communicate with others and is often useful when you’re going to meet new members of your species that you haven’t met before,” explains Michael Goldstein, a professor of psychology at Cornell University who studies vocal learning in songbirds and humans but was not involved in the study. Vocal learning is most prominent in human infants who, in their first year of life, learn to break up the continuous speech they hear from adults into individual units of sound. Over time, the mimicry of sounds helps babies piece together words and eventually lets them build sentences, Goldstein says.

To get a better grasp of vocal learning and cognition, the study authors turned to songbirds. The majority of species in this avian suborder possess the vocal learning ability. They thrive on every continent except Antarctica. “Of all the bird species in the world, songbirds make up half that number,” explains Jarvis. “It seems like once vocal learning evolved, there was a lot of speciation and diversity.” 

The team performed seven cognitive experiments on 214 songbirds from 23 different species. Of these, 21 species were caught from the wild in New York. Two songbirds studied, zebra finches and canaries, are domesticated. The behavioral tests examined the birds’ problem solving, for instance by figuring out how to remove an object to access the food reward. The researchers also gauged two other skills often associated with intelligence: learning by association, plus what’s called reversal learning, in which an animal adjusts its behavior to get a reward.. They then looked at whether being vocal learners helped develop the three skills, comparing 21 bird species to two others, which were vocal non-learners (these birds learned sounds only during a brief developmental period).

[Related: What does brain size have to do with intelligence?]

The biologists noticed a strong relationship between vocal learning and problem-solving skills. Vocal learning bird species could come up with innovative ideas, such as getting seeds or a worm trapped under a cup by removing the obstacle, piercing it, or pulling it apart. “It’s pretty surprising that these two skills are related to intelligence but not the other traits we measured,” explains Jean-Nicolas Audet, an ecologist and neurobiologist at Rockefeller University who served as the lead study author. All three abilities—problem solving, associative learning, and reversal learning—are typically considered “components of intelligence,” he says.

This doesn’t mean that the two bird species who were not vocal learners were stupid. Instead, it shows they did not evolve this one particular form of intelligence. “We have to be careful and very specific when we talk about intelligence because it really depends on which traits we are talking about,” Audet explains.

[Related: Wild birds don’t need your backyard feeders to survive]

Brain size was another benefit to vocal learning that may have supported these problem-solving abilities. The 21 vocal-learning species had slightly larger brains, relative to their body size, than the two who weren’t. Jarvis says it’s possible these big-noggined birds packed more neurons. Or perhaps they evolved to have larger skull space, which gave rise to extra circuits for more advanced vocal learning and problem-solving skills. “This suggests to me that there’s something special about problem solving,” he says. “Like spoken language, it made some species more advanced than others.”

One question left unanswered is why there’s such a strong relationship between problem-solving abilities and vocal learning. The brain areas in charge of vocal learning are not the same ones that get activated when we need to troubleshoot an issue, says Audet. The next step for this team is to take a deeper look into the brains of songbirds and figure out what genes or other brain regions connect these two areas. Some bridge yet undiscovered helps form this type of intelligence.

The post What songbirds can teach us about being smart appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
We still don’t know how animals evolved to fly https://www.popsci.com/science/how-did-dinosaurs-evolve-to-fly/ Thu, 14 Sep 2023 13:00:00 +0000 https://www.popsci.com/?p=568193
Microraptor wearing helmet is shot out of a circus cannon to represent how dinosaurs evolved to fly. Illustration in red, yellow, blue, and green.
Feathered dinosaurs like Microraptor probably shot for the skies over and over. María Jesús Contreras for Popular Science

Which came first: the flying dinosaur or the bird?

The post We still don’t know how animals evolved to fly appeared first on Popular Science.

]]>
Microraptor wearing helmet is shot out of a circus cannon to represent how dinosaurs evolved to fly. Illustration in red, yellow, blue, and green.
Feathered dinosaurs like Microraptor probably shot for the skies over and over. María Jesús Contreras for Popular Science

Dinosaur Mysteries digs into the secretive side of the “terrible lizards” and all the questions that keep paleontologists up at night.

WE STILL LIVE in an age of dinosaurs. Pigeons, penguins, and partridges are all members of the only lineage to survive the asteroid-driven disaster of 66 million years ago. The realization that at least some dinosaurs still flock among us has given a greater depth to paleontology than the field’s founders could have imagined. What we learn about living dinosaurs can help us better understand the species we can touch only as fossils. But even though we can trace the origins of birds from their Velociraptor-like ancestors, there’s one critical part of the story that we don’t fully understand. How on earth did dinosaurs such as Microraptor evolve the ability to fly?

The definition of flight can be a little tricky—it’s not simply about moving through the air. After all, there are marsupials, frogs, snakes, and other animals capable of gliding for impressive distances. Flight is something more specific, requiring the evolution of not only wings but a wing stroke. Watch a raven flap by and you’re watching a dinosaur demonstrate the exact mechanics of keeping itself aloft with one wingbeat after another. The question paleontologists face is how dinosaurs went from terrestrial reptiles scurrying over the ground to feathery, fluttering wonders.

Archaeopteryx lithographica, the earliest recognized bird at about 150 million years old, is of limited help. When the fossil was uncovered in the late 19th century, the splash of feathers found around the Jurassic dinosaur’s bones were quickly taken as an indication that its kind soared over the forests of prehistoric Bavaria. Over time, however, the genus Archaeopteryx started to look more awkward than aerodynamic. The avian ancestor had asymmetrical flight feathers with a shallow leading edge, a critical adaptation for powered flight—but its skeletal anatomy didn’t look capable of flight the way we see it in living birds. The contradiction led to a longstanding debate over whether Archaeopteryx actively flapped into the air, primarily glided, or perhaps even used a different flight stroke from its modern relatives. Whatever the answer, the solution to the mystery can’t be found in its bones alone. And as further feathery dinosaur species have been uncovered, the caper has only grown more complex.

Since the mid-1990s, paleontologists have uncovered dozens of feathery dinosaurs. Many of them are close relatives of Mesozoic birds or otherwise have adaptations related to flight, including the genus Microraptor, which had long feathers on its legs as well as its long arms. In fact, paleontologists think powered flight evolved at least three times among dinosaurs: once among birds and twice among their close dinosaur relatives such as Rahonavis ostromi. That’s not counting the number of feathery species whose anatomy made them more aerodynamically adept than others, but that still weren’t quite capable of keeping themselves aloft by flapping. Instead of a neat, orderly pattern of flight-related traits among birds and their ancestors, the emerging picture shows a tangled mess.

That changes the entire backstory of flying beasts. Up until recently, feathery dinosaurs were cast as representatives of stages in the evolution of flight. Now paleontologists have to figure out how they evolved flight independently multiple times among both birds and feathery nonavian dinosaurs. The path the ancestors of Archaeopteryx took might not be the same as the path taken by predecessors of Microraptor or Rahonavis.

Experts have tossed plenty of ideas about the origins of flight against the proverbial wall. These are broadly divided into “ground-up” and “trees-down” hypotheses, with most paleontologists favoring explanations that focus on how a ground-dwelling, Velociraptor-esque avian ancestor could evolve the ability to fly. Maybe feathery bird ancestors chased insects, leaping after them and trying to trap them with their arm feathers, which would favor dinosaurs able to stay in the air longer. Or maybe flight started with gliding and dinosaurs climbing trees to swoop through the forest, which would give an advantage to those that could flap their arms to soar just a little farther. The behavior of modern birds has provided some clues too, like the way chukar partridges flap their wings to better stabilize themselves while running up inclines.

Every hypothesis about how airborne dinosaurs evolved focuses on the behavior of animals we can’t observe in life. Experts have to draw out what clues they can from feathers, bones, the universal mechanics of flight, and how birds today manage to get into the air and stay there. While it’s possible to conduct wind-tunnel experiments based on skeletal mechanics and other inferred details to calculate how an Archaeopteryx would have fared while flying, there will always be a difference between what a prehistoric species could have done and how it actually behaved back in the Mesozoic. Evolution is not a tidy progression towards a particular outcome, but a story of constant change full of repeats, dead ends, and diversity.

There can’t be a single solution to the puzzle of how dinosaurs evolved to fly because scientists have more than one case to consider. Whether it consists of birds or nonavian dinosaurs, the history of each lineage has to be studied on its own terms. More than that, what seemed like a basic question about the first flying dinosaurs only creates more questions about what led different dinosaurs in different places and times, many miles and millions of years apart, to evolve similar abilities. Pterosaurs—fuzzy, flying reptiles that were related to dinosaurs—reigned over the skies more than 50 million years before Archaeopteryx, so it’s not as if Earth weren’t already full of fliers before dinosaurs caught on. The stories we now deduce of how flying dinosaurs gained their astonishing ability are far more complex than the ones we had even 20 years ago. When you see a house finch alight on a feeder or a turkey vulture slowly turn over a thermal, you’re catching a glimpse of one of the greatest secrets still cached in the fossil record.

Read more PopSci+ stories.

The post We still don’t know how animals evolved to fly appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Virgin Galactic’s latest cargo? Ancient human bones https://www.popsci.com/science/virgin-galactic-human-bones/ Tue, 12 Sep 2023 14:00:00 +0000 https://www.popsci.com/?p=569610
Virgin Galactic spacecraft in suborbital flight above Earth
One passenger traveled with fossils of both Australopithecus sediba and Homo naledi. Virgin Galactic

A clavicle and thumb bone from two of humanity's oldest relatives traveled into suborbital space on a tourist trip last week.

The post Virgin Galactic’s latest cargo? Ancient human bones appeared first on Popular Science.

]]>
Virgin Galactic spacecraft in suborbital flight above Earth
One passenger traveled with fossils of both Australopithecus sediba and Homo naledi. Virgin Galactic

Space tourism is already becoming so commonplace that Virgin Galactic’s second private astronaut flight on September 8 went off without much fanfare. And although a brief press announcement only announced the names of its three-man passenger list after the trip, the recap didn’t mention Galactic 03’s historic “first” cargo—fossilized bones from two of humanity’s closest ancestors.

According to Tim Nash’s Virgin Galactic biography, the “entrepreneur, adventurer, conservationist and member of the Hubbard Council of The National Geographic Society,” carried with him the clavicle of a nearly 2-million-year-old Australopithecus sediba, as well as a roughly 250,000-year-old thumb bone from Homo naledi. Both hominid remains were previously discovered within the Cradle of Humankind UNESCO World Heritage Site outside Johannesburg, South Africa—sebedi is considered one of the potential candidates that presaged humanity’s Homo genus.

The initiative’s organizers, including researchers at the University of Witwatersrand, Johnnesburg, intended the gesture to represent “humankind’s appreciation of the contribution of all of humanity’s ancestors and our ancient relatives,” said Lee Berger, a National Geographic Explorer in Residence, Carnegie Fellow and Director of the Centre for the Exploration of the Deep Human Journey. “Without their invention of technologies such as fire and tools, and their contribution to the evolution of the contemporary human mind, such extraordinary endeavors as spaceflight would not have happened.”

[Related: Virgin Galactic’s second commercial flight sent three tourists to space’s edge.]

Berger’s son, Matthew, discovered the sebida clavicle in 2008 when he was 9 years old during an expedition alongside his father within the Cradle of Humankind heritage site. Matthew Berger traveled last week to Virgin Galactic’s Spaceport America in New Mexico to hand deliver the bones to Nash, a conservationist involved with human origins research. Caretakers stored both bone fragments within a carbon fiber container prior to their suborbital excursion.

“These fossils represent individuals who lived and died hundreds of thousands of years ago, yet were individuals who likely gazed up at the stars in wonder, much as we do,” Berger said in a September 8 statement via the University of Witwatersrand.

“The magnitude of being among the first civilians going into space, and carrying these precious fossils, has taken a while to sink in, during all of the preparations for the flight,” Nash said via the University of Witwatersrand statement, “But I am humbled and honored to represent South Africa and all of humankind, as I carry these precious representations of our collective ancestors, on this first journey of our ancient relatives into space.”

Nash, alongside Las Vegas real estate entrepreneur Ken Baxter and British engineer and racecar company founder Adrian Reynald, purchased their Virgin Galactic seats as far back as 2004 from company founder and multibillionaire Richard Branson. Tickets for the few minutes’ worth of suborbital weightlessness alongside views of the Earth’s curvature reportedly cost between $250,000 and $450,000.

“We sincerely hope it brings further awareness of the importance of our country and the African continent to understanding the journey of humankind that has led to this historic moment where commercial spaceflight is possible,” says Cradle of Humankind World Heritage Site CEO Matthew Sathekge said via University of Witwatersrand’s announcement.

The post Virgin Galactic’s latest cargo? Ancient human bones appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These crow relatives put food over friendship https://www.popsci.com/science/jackdaw-social-family-food/ Mon, 11 Sep 2023 14:00:00 +0000 https://www.popsci.com/?p=569128
two jackdaws (Corvus monedula) on a branch
Crows have clique dynamics too. Deposit Photos

In an experiment, jackdaws ditched 'friends' but not family.

The post These crow relatives put food over friendship appeared first on Popular Science.

]]>
two jackdaws (Corvus monedula) on a branch
Crows have clique dynamics too. Deposit Photos

The lives of corvid, or the family of birds that include crows, are shockingly complex. They hold ‘monogamish’ relationships, build tools, hold funerals, solve puzzles, and may even have their own form of democracy. Now, researchers have provided the latest peek into corvid life that adds a new element to their intricate and complicated lives—social climbing. Yes, even birds will ditch their old friends if something better comes along, according to a new study published September 11 in Nature.

For their recent experiment, scientists at universities of Exeter and Bristol utilized the Cornish Jackdaw Project to split a group of jackdaws, members of the crow family found in Europe, western Asia and North Africa, into two randomly sorted groups—A and B. They then tagged the birds with transponder chips, worn like little anklets, to tell who was who. 

[Related: Crows and ravens flexed smarts and strength for world dominance.]

As many animal studies go, there’s got to be some kind of snack involved. This time, the scientists set up a feeding source with two locked doors—one filled with grain, a merely okay morsel for a hungry crow, and the other with a much yummier rendition of some grain and some dried mealworms. If a bird visited alone, only the low-quality snack door opened. With a buddy from the same-tagged group, say two As or two Bs, either both doors unlocked or just the high-quality snack door. But when a jackdaw visited the snack dispenser with a member of the opposite-tagged clique, there were no goodies for anybody.

The choice for the birds then was either loyalty or tasty treats. 

“The jackdaws turned out to be very strategic, quickly learning to hang out with members of their own group and ditching old ‘friends’ from the other group so they could get the best rewards,” author Alex Thornton, a professor of cognitive evolution at Exeter, said in a release.

The same couldn’t always be said for familial relationships. Despite the potentially disappointing outcome, jackdaws would still stick with their offspring, siblings, or mating partners. Some long-term relationships, it turns out, were more important to the feathery creatures than a chance at a delicious morsel. 

“The fundamental idea is that if you need to keep track of interactions you have had with other individuals, remember the outcomes of those interactions and use those to adjust your [behavior],” Thornton told the Guardian. “What we were able to do here was test the idea: can individuals keep track of the outcomes of past interactions and update their relationships. It turns out they can.”

For the authors, these results can give us clues to the evolution of intelligence, memory, and social status in the animal kingdom—and even in the human world. 

“Our findings also help us to understand how societies emerge from individual decisions,” author and Exeter PhD student Josh Arbon said in a release. “The balance between strategically playing the field for short-term benefits and investing in valuable long-term partners ultimately shapes the structure of animal societies, including our own.”

The post These crow relatives put food over friendship appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
New series offers an intimate look into how climate change impacts the lives of wildlife https://www.popsci.com/environment/animals-up-close-bertie-gregory/ Mon, 11 Sep 2023 12:00:00 +0000 https://www.popsci.com/?p=568557
An orca whale swims around an ice flow with a crabeater seal and penguin on the ice.
An orca whale swims around an ice flow with a crabeater seal and penguin on the ice. National Geographic for Disney+/Leigh Hickmott

Catch an exclusive clip of orca whales before Animals Up Close with Bertie Gregory premieres on September 13.

The post New series offers an intimate look into how climate change impacts the lives of wildlife appeared first on Popular Science.

]]>
An orca whale swims around an ice flow with a crabeater seal and penguin on the ice.
An orca whale swims around an ice flow with a crabeater seal and penguin on the ice. National Geographic for Disney+/Leigh Hickmott

Climate change is often in the form of extremes in weather like sweltering heat domes, devastating inland flooding or record breaking wildfire seasons, which puts lives and livelihoods at risk for humans. However, the world’s animals who are on the front lines of an ever changing planet experience these changes a little differently. 

[Related: We don’t have a full picture of the planet’s shrinking biodiversity. Here’s why.]

“When we see climate change in the news, we often think of big storms or major weather events but animals are vulnerable to the smallest changes,” wildlife filmmaker and host Bertie Gregory tells PopSci

In the new series “Animals Up Close with Bertie Gregory,” viewers can get a look into these subtleties and changes. In one episode, the team is searching a dive spot in Indonesia for the elusive devil ray, when a swarm of hundreds of jellyfish approaches.

“Avoiding their stingers was like playing a video game! We were told that huge jellyfish plumes like that were becoming a more regular sight in these tropical waters, which is not a good sign,” Gregory says. 

When Gregory checked the dive thermometer, it read 87.8 degrees Fahrenheit, in water that should have been about 82 degrees. A few degrees might not always sound like much, but has an outsized impact on animals.  “Jellyfish are thought to tolerate climate change better than other species, hence their huge numbers on that day. For us, it meant no other signs of life,” says Gregory.

[Related: Maine’s puffins show another year of remarkable resiliency.]

The series spans the planet and uses high-tech drones and cameras that Gregory calls a “game changer” for wildlife filmmaking. The tech allows the filmmakers to catch a glimpse of the outer lives of animals and even some of their more inner workings.

“We also used a military grade thermal imaging camera to film elephants at night in the depth of the jungle in the Central African Republic—it uses heat to “see” in the dark and elephant ears look incredible as you can see all their veins!” says Gregory.

The series also captures just how difficult it is for terrestrial animals like the pumas of Patagonia and marine mammals like Antarctica’s orca whales to get a solid meal and how climate change continues to threaten vital food sources. 

An episode features a group of Antarctic orcas known as the B1s during what Gregory says was the warmest Antarctic trip he has ever experienced. These killer whales are known for a unique strategy to hunt seals resting on the ice that might remind some orca enthusiasts of the hydroplaning killer whales near Argentina’s Valdés peninsula who thrust their 8,000 to 16,000 pound bodies up onto the beach to catch seals. 

Bertie records the sounds made by killer whales as they echolocate. He explains how scientists believe that this is a way that their navigation is perfectly coordinated. CREDIT: National Geographic for Disney+.

Instead of using surf, sand, and rocks like their Argentinian cousins, these Antarctic killer whales work together as a team to create waves that wash the seals into the water. 

“We witnessed and filmed the staggering intelligence and adaptability of a group of killer whales. There are thought to be just 100 of these unique killer whales in existence, and during filming it was clear they were struggling to ‘wave wash’ seals from ice because there wasn’t much ice,” says Gregory.

[Related: Orcas are attacking boats. But is it revenge or trauma?]

The whales had to constantly adapt their strategy just to get a single seal, sometimes risking an escape from their prey in order to teach the younger whales strategies to carry on to the next generation. 

These constant struggles offer up sobering reminders of the macro and micro ways that the planet is changing and making life more difficult for almost every living thing.. Over one million animal and plant species are threatened with extinction, a rate of loss that is 1,000 times greater than previously expected. The  United Nations agreed upon a biodiversity treaty at the end of 2022 pledging to protect 30 percent of the Earth’s wild land and oceans by 2030. Currently, only about 17 percent of terrestrial and 10 percent of marine areas are protected through legislation.

Bumphead parrot fish. CREDIT: National Geographic for Disney+/Bertie Gregory
A bumphead parrot fish. CREDIT: National Geographic for Disney+/Bertie Gregory

The same location in Indonesia where Gregory and his team encountered the stingy jellyfish swarm is home to the Misool Marine Reserve. Despite climate change’s constant challenges, the area is a conservation success story thanks to community-led initiatives to protect the area from overfishing by implementing specific parts where fishing is allowed.

“Now, Misool is one of the few places on earth where biodiversity is increasing. What they’ve managed to do could be a blueprint for how we can protect oceans around the world and proof that if given the chance, nature can make an amazing comeback,” says Gregory. “It’s good news for wildlife and good news for people.”

“Animals Up Close with Bertie Gregory” premieres September 13 on Disney+.

The post New series offers an intimate look into how climate change impacts the lives of wildlife appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How an internet sleuth rekindled hope for the survival of the clown wedgefish https://www.popsci.com/environment/clown-wedgefish-extinction-internet/ Fri, 08 Sep 2023 22:00:00 +0000 https://www.popsci.com/?p=568809
How do you find an elusive animal that most people have never even seen dead in a fish market? Matthew McDavitt, above, knows how.
How do you find an elusive animal that most people have never even seen dead in a fish market? Matthew McDavitt, above, knows how. Photo by Melody Robbins

Scientists were writing an obituary for this species when a lawyer found evidence of its existence in an unlikely place.

The post How an internet sleuth rekindled hope for the survival of the clown wedgefish appeared first on Popular Science.

]]>
How do you find an elusive animal that most people have never even seen dead in a fish market? Matthew McDavitt, above, knows how.
How do you find an elusive animal that most people have never even seen dead in a fish market? Matthew McDavitt, above, knows how. Photo by Melody Robbins

This article was originally featured on Hakai Magazine, an online publication about science and society in coastal ecosystems. Read more stories like this at hakaimagazine.com.

Peter Kyne sits down at his desk to write a eulogy for a fish he’s never met. It’s summer 2019. No scientist has seen signs of the critically endangered Rhynchobatus cooki, or clown wedgefish, since a dead one turned up at a fish market in 1996. Kyne, a conservation biologist at Charles Darwin University in Australia who studies wedgefish, has worked only with preserved specimens of the spotted sea creature. “This thing’s dust,” Kyne thinks, feeling defeated as he writes the somber news in a draft assessment of the global conservation status of wedgefish species for the International Union for Conservation of Nature.

Wedgefish are a type of ray. They look like sharks that swam head first into a panini press, with flat faces and sharkish tails. The clown wedgefish is the runt of the 11 known species, about as long as a baseball bat. Along with their cousins, sawfish and guitarfish, wedgefish are among the most endangered animals in the sea, thanks largely to fishers who supply the shark fin trade. Fetching up to US $1,000 per kilogram, wedgefish’s spiny fin meat is some of the most highly sought in this ecocidal economy because it’s perfect for shark fin soup, a delicacy favored by wealthy East Asian seafood connoisseurs.

Wedgefish’s pointy snouts are easily snagged in fishing nets, so they’re also a frequent, unintended casualty of other commercial fisheries. This double whammy has led to the near eradication of wedgefish worldwide. Nine species are critically endangered. Kyne is about to add an extinction to that list.

Fish photo
Peter Kyne, a conservation biologist at Charles Darwin University in Australia, thought the clown wedgefish was extinct, until Matthew McDavitt presented evidence to the contrary. Photo courtesy of Charles Darwin University

Just hours before submitting the final assessment, though, Kyne learns that a dead clown wedgefish has just shown up at a Singapore fish market. Relieved, he and his colleagues revise their work. But the swift action necessary to help the species won’t be possible without more information. The scientists don’t even know the critter’s habitat requirements. Somehow, they must find out where the last holdouts live.

Kyne mentions the problem in a Zoom meeting about wedgefish conservation. Luckily for Kyne, his friend Matthew McDavitt is among the attendees. McDavitt is an amateur academic well versed in an emerging research methodology that turns the virtual sea of social media posts into information scientists can use to track the world’s rarest species. His curiosity ignited, McDavitt gets to work. Kyne doesn’t know it yet, but the hunt for the clown wedgefish is on.


Matthew McDavitt happens to be an expert on wedgefish and their relatives, but he’s no scientist. He grew obsessed with sawfish as a kid, when the ray’s long, toothy snout hooked his curiosity. At university, McDavitt studied archaeology and became fascinated with ancient cultural ties to sawfish when he learned the Aztecs buried sawfish snouts under their temples and rendered the fish’s likeness in paintings.

After graduating, he wanted to study the sawfish’s importance to other cultures around the world. But sawfish-adjacent ethnozoologist jobs weren’t exactly falling from the sky, so McDavitt pivoted to a legal career. He earned his law degree and became a research attorney, ghostwriting trial briefs and law articles for other attorneys, judges, and mediators, but he never gave up his passion. He started obsessing over guitarfish and wedgefish, too, cramming his marine studies into what little free time he had, sometimes unable to touch them for months. “I do it on breaks. I put in the time when I can,” he says. “I do it on weekends sometimes.”

Fish photo
McDavitt, a lawyer, studied archaeology as an undergraduate and became enamored with the cultural ties ancient civilizations had to sawfish and eventually that enthusiasm extended to guitarfish and wedgefish. Photo by Melody Robbins.

In the early 2000s, as the internet gained traction and social media began its rise, McDavitt mined a treasure trove of information about wedgefish and sawfish—fishing-trip photos, sightings, ancient art, whatever he could find. Over two decades, he compiled thousands of pictures and posts about various species and stored them on his computer.

At first, McDavitt served only his own curiosity about different cultures’ connections to his favorite fish. But along the way, as he contacted ecologists who studied sharks and rays to ask questions and share his findings, he discovered species in locations where they hadn’t been formally recorded before. In some cases, he found what his new ecologist friends suspected were entirely new species. “I’ll often get into work and there, in my inbox, there’s something else he’s found,” says Kyne, who met McDavitt at a sawfish conservation workshop. “I’m like, Matt, how do you do this?” McDavitt began to realize his ethnozoological research could be used to study and protect imperiled marine animals.

McDavitt was practicing what is now known as iEcology, which relies on online public data sources to study the natural world. Scientists can download thousands of records of the species they’re studying without setting foot in the field. “It’s a huge amount of data,” says Ivan Jarić, a professor at Université Paris-Saclay in France and one of iEcology’s most devout advocates. “It is, in many cases, freely available, so it’s easy and cheap to obtain it.”

Many social media posts come tagged with dates and locations, allowing scientists to track animals through space and time to study movement patterns, interspecies behavior, and the abundance and spread of invasive or endangered species. One study used pictures and videos from Italian tourists to track blue sharks along the Mediterranean coast over a decade. Another used Facebook and Instagram posts to count whales on their annual migrations along the coast of Portugal. Scientists in Hawai‘i have used tourist photos to monitor critically endangered Hawaiian monk seal populations.

Fish photo
The COVID-19 pandemic slowed down field studies, but scientists took advantage of various internet platforms where they could find pictures of wedgefish. Photo by Melody Robbins.

iEcology’s origins trace back to at least 2011, but the method began to gain traction in the past several years, as Jarić and other scientists proselytized its advantages. It got another boost in 2020, when the pandemic scuttled fieldwork for many scientists, as iEcology offered them a remote way to continue their research. “It basically saved two years of my career,” says Valerio Sbragaglia, a behavioral ecologist at the Spanish National Research Council’s Institute of Marine Science, who spent the COVID-19 lockdown using amateur angler videos to monitor the spread of an invasive grouper species as it pushed north through a warming Mediterranean Sea.

There are other advantages, too. Field studies can be a constant game of catch-up, where data may become outdated before ecologists can publish their analyses. But iEcology allows them to monitor animals in near real time. These tools also make ecological surveys more accessible to scientists who can’t secure funding for expensive field trips. In Brazil, for instance, researchers used YouTube videos to find examples of people releasing pet fish into wild waterways, where they multiplied and became invasive. “For a developing country,” Sbragaglia says, “it’s a first source of information that can support future research.”

McDavitt’s iEcology skills have earned him a reputation among marine ecologists as a sort of super citizen scientist. His research has been cited in scientific papers detailing the illegal shark fin trade, and he has published his own research on the importance of sawfish to Indigenous peoples in Australia. McDavitt’s work was cited numerous times in a 2007 proposal that convinced the governing body behind the Convention on International Trade in Endangered Species of Wild Fauna and Flora, or CITES, to restrict the trade of seven species of endangered sawfish. “I’m good at finding weird things,” he says.


McDavitt begins his search for the clown wedgefish shortly after his 2019 Zoom meeting with Kyne. The first thing he does is create a methodology for sifting through social media posts. The known clown wedgefish sightings are all at fish markets in either Jakarta or Singapore. McDavitt figures the creatures must live somewhere between the two places, a vast stretch of sea dotted with thousands of islands, occupied by millions of people.

With this in mind, McDavitt compiles a list of about 25 common names for wedgefish from the local Indonesian, Chinese, and Malay dialects spoken across the western Indonesian archipelago. He targets the islands lining the coasts of Sumatra and Borneo, sometimes narrowing his queries to individual towns and villages he finds on Google Maps. His searches produce thousands of posts, many by local subsistence fishers showing off their catches. Dozens include wedgefish, but they’re all the wrong species. “I’m just going through picture after picture after picture, and most of it is, of course, not useful to me,” McDavitt says.

Fish photo
Hours of pouring over data gleaned from the internet eventually revealed the location of clown wedgefish, somewhere between Sumatra, Singapore, and Borneo. Photo by Melody Robbins.

In August, several weeks after Kyne almost wrote off the clown wedgefish, McDavitt hunches over a desk buried in teetering piles of legal paperwork, scrolling through Facebook posts. He pauses on yet another wedgefish photo. “It looked weird,” McDavitt says. The picture, from a 2015 post, shows a somber young Indonesian man hefting a small, flat fish. The white-edged fins and playful polka dots are unmistakable. McDavitt has found the clown wedgefish.

He jumps up from his desk and shouts for his wife. Then he emails Kyne, who has no idea what his friend has been up to until he receives the message. “If it was in the morning, I would’ve had coffee. If it was late at night, I would’ve had red wine. In either case, I probably did spit some out,” Kyne remembers.

The photo comes from Lingga Island, part of a cluster of islands wedged between Sumatra, Singapore, and Borneo. Kyne hurries to apply for grants to fund a full field study of the area. McDavitt keeps combing the web. Over the next few months, he finds five more photos of clown wedgefish from local fishers; some pictures are only a few weeks old. He and Kyne map their findings, establishing for the first time in Western science the clown wedgefish’s range, and publish their work in 2020.

Kyne also taps Charles Darwin University PhD candidate Benaya Meitasari Simeon, who’s spent years researching other wedgefish species, to spearhead the study’s local initiatives. Simeon grew up eating wedgefish, a traditional Indonesian food. Now she’s vowed to protect them; she even sports a wedgefish tattoo on one arm. Simeon musters a team of students and locals to hang illustrated wedgefish guides—scientific wanted posters—in areas where the fish has shown up on Facebook, to help local fishers identify clown wedgefish in their catch and report sightings.

Fish photo
Images of the clown wedgefish are about as scarce as the fish itself. Two animals on the left are clown wedgefish, and three on the right are broadnose wedgefish. Photo courtesy of Matthew McDavitt.

A big part of Simeon’s job is convincing locals to participate in the project. Some are wary of conservationists because they fear new fishing restrictions could harm their livelihoods. The key, Simeon says, is explaining to fishers that “if it’s gone, it’s gone forever and your kids cannot see it anymore.” Her efforts pay off: her network reports around 10 clown wedgefish catches. All are dead.

In early 2023, Simeon travels from her home in Jakarta to a Sumatran hotel room where her colleagues have a juvenile clown wedgefish for her to inspect. She takes the palm-sized spotted carcass into the hotel bathroom for a closer look. She cries as she touches it. “I saw hope,” she says.


As popular platforms like Facebook, X (formerly Twitter), and Instagram become major sources of research material, scientists must grapple with new challenges. Even experts can misidentify species in amateur photos when they can’t measure, touch, or see the creature for themselves. Researchers must meticulously review and confirm the records they’ve gathered to avoid false identifications. Some have been less thorough than others.

Last year, a group of European scientists published a paper claiming to have found the first record of a young goblin shark in the Mediterranean, a deep-sea species with a face straight out of a Ridley Scott sci-fi flick. They based their conclusion on a photo taken on a Mediterranean beach. But some experts noticed that the juvenile “shark” appeared to be missing a gill and was strangely rigid for a dead fish. McDavitt spotted the fraud immediately. The proof was on his living room shelf: a plastic goblin shark toy that matched the supposed animal in the picture. The authors retracted their paper after McDavitt and others raised concerns.

Scientists using social media data to study species that have been nearly eradicated by poaching run the risk of exposing those animals to further harm. “If it’s a very rare species, you don’t want to publicize the location where the species can be found because of potential misuse,” Jarić says. And the research raises a familiar ethical conundrum. In a social media–saturated world where personal privacy is itself endangered, how do you ethically scrape pictures and videos provided by the masses without their consent? For now, scientists manage this by anonymizing posts, blurring profile photos, and removing usernames.

Fish photo
The McDavitts of the world need months to compile data, searching for an animal rarely photographed. One day, artificial intelligence may make the job simpler. Photo by Melody Robbins.

And there is always the prospect of misinformation and falsehoods making it into data sets. Artificial intelligence (AI) may prove a complicated partner in this regard. Researchers like Sbragaglia have recruited coders to develop machine-learning models for disseminating massive arrays of data about a specific species. They hope these AI models will pull, in a matter of hours, databases of pictures and videos that the McDavitts of the world would need months to compile. But with the alarming advance of artificially generated images, AI could also hinder scientists’ ability to tell real pictures from fake ones. “This is terrifying,” Sbragaglia says. “But I think for the moment, it’s far away.”


On a windy day in June 2023, Kyne dives into the turquoise waters off the coast of Singkep Island, just south of the location where McDavitt discovered the first clown wedgefish post in 2019. Jungle-clad mountains loom in the distance. Palm trees lean drunkenly over white sand beaches. Simeon and other scientists watch from the boat as Kyne disappears into the depths, clutching an empty one-liter bottle. Fleets of commercial fishing boats dot the surrounding sea, underscoring the urgency of the task.

Kyne and Simeon are here to collect samples for an eDNA study, supported by three years of funding that the Save Our Seas Foundation supplied for the wedgefish search, thanks in large part to McDavitt’s findings. When a creature swims through the water, it sheds genetic material that can reveal its presence once water samples taken from that area are analyzed. When the survey results are back in six months to a year, the scientists hope they can zero in on where clown wedgefish are hiding. Ultimately, they hope to convince the Indonesian government to enact laws that specifically protect the species. They have some traction: officials have already sought Simeon’s advice on where to implement stricter protections for endangered marine animals.

As Kyne swims toward the ocean floor, the water grows thick with debris. He can barely see the bottle in his hand when he reaches the sandy bottom, unscrews the lid, and fills it with seawater that he hopes will contain the next clue in his team’s long quest. The clown wedgefish may remain a shrinking target in a murky sea, and Kyne has yet to see one alive. But now, as he caps the bottle and swims for the surface, he’s confident the species is still hanging on, somewhere beyond the silt and trash. McDavitt keeps finding evidence of the fish on Facebook, including several specimens from a new location on the Sumatran coast. All the team has to do is find them IRL—in real life.

This article first appeared in Hakai Magazine and is republished here with permission.

The post How an internet sleuth rekindled hope for the survival of the clown wedgefish appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
‘Living material’ water filter uses bacteria to neutralize water pollutants https://www.popsci.com/technology/water-filter-cyanobacteria-3d-print/ Fri, 08 Sep 2023 18:15:00 +0000 https://www.popsci.com/?p=568893
3D printer making algae-based water decontaminate
The new creation safely dissolves after coming into contact with a specific molecule. UC San Diego

The algae-derived mixture can also safely break down after coming into contact with a molecular relative of caffeine.

The post ‘Living material’ water filter uses bacteria to neutralize water pollutants appeared first on Popular Science.

]]>
3D printer making algae-based water decontaminate
The new creation safely dissolves after coming into contact with a specific molecule. UC San Diego

Decontaminating water is as vital an endeavor as ever as pollution issues continue to flood the planet. Knowing this, researchers at the University of California San Diego just created the latest mind-bending tool to aid in future clean-up projects: a 3D-printed “engineered living material” made of seaweed polymers and genetically altered bacteria that breaks down organic pollutants in water.

As detailed via a new paper published in Nature Communications, the remarkable creation comes courtesy of a team working within the University of California San Diego’s Materials Research Science and Engineering Center (MRSEC). According to the project announcement, the team first hydrated a seaweed-derived polymer known as alginate. Meanwhile, the researchers genetically engineered a waterborne, photosynthetic bacteria called cyanobacteria to produce laccase, an enzyme capable of neutralizing organic pollutants like antibiotics, dyes, pharmaceutical drugs, and BPAs. The ingredients were then combined and passed through a 3D printer to produce a grid-like design whose surface area-to-volume ratio allowed the bacteria optimal access to light, gasses, and nutrients.

[Related: The US might finally regulate toxic ‘forever chemicals’ in drinking water.]

“This collaboration allowed us to apply our knowledge of the genetics and physiology of cyanobacteria to create a living material,” School of Biological Sciences faculty member Susan Golden said in a statement. “Now we can think creatively about engineering novel functions into cyanobacteria to make more useful products.”

To test their creation, the engineers introduced their decontaminator to water polluted by indigo carmine, a blue dye often used within denim textile manufacturing. The team’s grid-like, living tool managed to safely and effectively decolorize the water solution over the course of multiple days.

However, that still leaves the alginate-cyanobacteria mixture within the water. Replacing one foreign pollutant with foreign, synthesized bacteria doesn’t necessarily solve the larger problem of contamination. To solve this, the UC San Diego team further engineered their version of cyanobacteria to adversely respond to theophylline, a molecule similar to caffeine found in many teas and chocolates. Whenever the decontamination substance comes into contact with the molecule, the bacteria subsequently produces a specific protein to break down and destroy its own cells, thus getting rid of the substance.

“The living material can act on the pollutant of interest, then a small molecule can be added afterwards to kill the [cyanobacteria],” Jon Pokorski, a professor of nanoengineering and research co-lead, said in the announcement. “This way, we can alleviate any concerns about having genetically modified bacteria lingering in the environment.”

As useful as this living filer could already be in decontamination projects, the team hopes to eventually take their substance a step further by designing it to self-destruct without the need for additional outside chemicals.

“Our goal is to make materials that respond to stimuli that are already present in the environment,” Pokorski explained.

The post ‘Living material’ water filter uses bacteria to neutralize water pollutants appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This organ-failure detector is thinner than a human hair https://www.popsci.com/technology/kidney-transplant-sensor/ Fri, 08 Sep 2023 17:00:00 +0000 https://www.popsci.com/?p=568863
Kidney transplant sensor on researcher fingertip
The new sensor is thinner than a single human hair. Northwestern University

A new medical sensor can measure kidney temperature fluctuations as small as 0.004 degrees Celsius.

The post This organ-failure detector is thinner than a human hair appeared first on Popular Science.

]]>
Kidney transplant sensor on researcher fingertip
The new sensor is thinner than a single human hair. Northwestern University

Human bodies can reject organ transplants at any time—sometimes even years after the procedure itself. When this occurs, time is of the essence to potentially save not only the organ’s viability, but the life of a patient. Unfortunately, noticeable symptoms of organ rejection can show up late, but a tiny new medical device is showing immense promise in offering dramatically earlier detection times.

As detailed in a new study published September 8 in the journal Science researchers at Northwestern University have developed an ultra-thin, soft implant that adheres directly to a transplanted organ’s surface to monitor its health. In small animal clinical trials involving kidney transplants, rejection warning signs were identified as much as three weeks earlier than current methods.

[Related: The first successful pig heart transplant into a human was a century in the making.]

“I have noticed many of my patients feel constant anxiety—not knowing if their body is rejecting their transplanted organ or not. They may have waited years for a transplant… [t]hen, they spend the rest of their lives worrying about the health of that organ,” Lorenzo Gallon, a transplant nephrologist at Northwestern Medical who led the study’s clinical portion, said in a statement. “Our new device could offer some protection, and continuous monitoring could provide reassurance and peace of mind.”

According to John A. Rogers, a bioelectronics expert who led device development for the project, identifying rejection earlier can allow physicians to administer various therapies to prevent a patient from losing the organ, or even their lives.

“In worst-case scenarios, if rejection is ignored, it could be life threatening,” Rogers said via Friday’s statement. “The earlier you can catch rejection and engage therapies, the better. We developed this device with that in mind.”

At 0.3 cm wide, 0.7 cm long, and just 220 microns thick, the new sensor is thinner than a single human hair and smaller than your pinky fingernail. The device’s tininess is key to its ability to adhere, slipping beneath a kidney’s fibrous renal capsule layer to rest directly against the organ. Once positioned, the device’s extremely sensitive thermometer measures kidney temperature fluctuations as miniscule as 0.004 degrees Celsius. A miniature coin cell battery currently powers the device alongside Bluetooth capabilities to wireless stream data results to researchers.

Since tissue inflammation is often an early sign of complications, researchers were alerted much faster to potential problems than currently available detection methods like creatine and blood urea monitoring. Due to normal body fluctuations, those existing options are also far less reliable and sensitive than the new device.

“Bodies move, so there is a lot of motion to deal with. Even the kidney itself moves,” Rogers continued, explaining that the organ’s soft tissue isn’t ideal for suturing. “These were daunting engineering challenges, but this device is a gentle, seamless interface that avoids risking damage to the organ.”

Moving forward, the team intends to begin larger animal trials, along with potentially expanding to test on organs such as livers and lungs. They also hope to integrate new power sources capable of externally recharging the device’s battery, thus offering a more permanent monitoring solution.

The post This organ-failure detector is thinner than a human hair appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Scientists discover a cat-sized ancient koala in Australia https://www.popsci.com/environment/lumakoala-blackae-koala-australia/ Fri, 08 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=568844
An artist’s illustration of the 25 million year old Ditjimanka Lumakoala blackae, featuring (left to right) the wallaby-sized herbivore Muramura williamsi, an extinct koala relative named Madakoala devis,i and the calf-size lizard called Ilaria lawsone.
An artist’s illustration of the 25 million year old Ditjimanka Lumakoala blackae, featuring (left to right) the wallaby-sized herbivore Muramura williamsi, an extinct koala relative named Madakoala devis,i and the calf-size lizard called Ilaria lawsone. Peter Schouten

'Until now, there’s been no record of koalas ever being in the Northern Territory; now there are three different species from a single fossil site.'

The post Scientists discover a cat-sized ancient koala in Australia appeared first on Popular Science.

]]>
An artist’s illustration of the 25 million year old Ditjimanka Lumakoala blackae, featuring (left to right) the wallaby-sized herbivore Muramura williamsi, an extinct koala relative named Madakoala devis,i and the calf-size lizard called Ilaria lawsone.
An artist’s illustration of the 25 million year old Ditjimanka Lumakoala blackae, featuring (left to right) the wallaby-sized herbivore Muramura williamsi, an extinct koala relative named Madakoala devis,i and the calf-size lizard called Ilaria lawsone. Peter Schouten

Australia is currently home to the only living species of their endangered and iconic koalas, but there once were multiple species spread across the continent. Now, the discovery of another marsupial ancient relative is helping scientists fill in a 30 million year evolutionary gap. The findings are detailed in a study published September 4 in the journal Scientific Reports.

[Related: With bulging eyes and a killer smile, this sabertooth was an absolute nightmare.]

In 2014 and 2020, study co-author Arthur Crichton, a PhD student at Flinders University in Adelaide, Australia, found fossil teeth of the new species, named Lumakoala blackae, at the Pwerte Marnte Marnte fossil site in central Australia. The teeth are believed to be roughly 25 million years old. 

“Our computer analysis of its evolutionary relationships indicates that Lumakoala is a member of the koala family (Phascolarctidae) or a close relative, but it also resembles several much older fossil marsupials called Thylacotinga and Chulpasia from the 55 million-year-old Tingamarra site in northeastern Australia,” Crichton said in a statement

According to Chrichton, it was previously suggested that the enigmatic Thylacotinga and Chulpasia may have been more closely related to marsupials from South America.  This new discovery of Lumakoala suggests that they could actually be early relatives of herbivorous Australian marsupials including possums, kangaroos, koalas, and wombats.

“This group (Diprotodontia) is extremely diverse today, but nothing is known about the first half of their evolution due to a long gap in the fossil record,” said Crichton. 

If the study’s hypothesis is correct, the diprotodontian fossil record would be aged back by another 30 million years. Additionally, wombats, kangaroos, koalas and possums split off from other marsupials between roughly 65 million and 50 million years ago.

A chart comparing the upper molar morphology between Chulpasia jimthorselli, Lumakoala blackae and the modern koala.,
Comparison of upper molar morphology between Chulpasia jimthorselli, Lumakoala blackae, and the modern koala. CREDIT: A. Crichton (Flinders University)

“These Tingamarran marsupials are less mysterious than we thought, and now appear to be ancient relatives of younger, more familiar groups like koalas,” Robin Beck, study co-author and evolutionary biologist at the University of Salford in England, said in a statement. “It shows how finding new fossils like Lumakoala, even if only a few teeth, can revolutionize our understanding of the history of life on Earth.” 

The study also raises some new questions, including whether these relatives of herbivorous marsupials in Australia once lived in Antarctica and South America. According to Beck, some South American fossils look very similar to the marsupials found at the Tingamarra site. 

[Related: This 500-pound Australian marsupial had feet made for walkin.’]

It also reports that two other types of koala called Madakoala and Nimiokoala lived alongside Lumakoala and filled in different ecological niches in the forests that flourished in central Australia about 25 million years ago. The late Oligocene (about 23–25 million years ago) was  “kind of the koala heyday,” according to the Flinders University paleontologist and study co-author Gavin Prideaux.

“Until now, there’s been no record of koalas ever being in the Northern Territory; now there are three different species from a single fossil site,” Prideaux said in a statement. “While we have only one koala species today, we now know there were at least seven from the late Oligocene – along with giant koala-like marsupials called ilariids.”  

At this time, iliariids were the largest marsupials living in Australia, weighing in at up to 440 pounds. Iliariids lived alongside a strong-toothed wombat relative named Mukupirna fortidentata and a strange possum named Chunia pledgei.

The post Scientists discover a cat-sized ancient koala in Australia appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Leggy dinosaur species could be the latest feathery clue to bird evolution https://www.popsci.com/science/china-bird-dinosaur-discovery/ Wed, 06 Sep 2023 15:00:00 +0000 https://www.popsci.com/?p=568265
An artist’s illustration of Fujianvenator prodigiosus, an avialan theropod who lived during the Late Jurassic period and had a lower leg that was twice as long as its thigh.
An artist’s illustration of Fujianvenator prodigiosus, an avialan theropod who lived during the Late Jurassic period and had a lower leg that was twice as long as its thigh. ZHAO Chuang

The Fujianvenator prodigiosus was a pheasant-sized swamp creature that lived around 150 million years ago.

The post Leggy dinosaur species could be the latest feathery clue to bird evolution appeared first on Popular Science.

]]>
An artist’s illustration of Fujianvenator prodigiosus, an avialan theropod who lived during the Late Jurassic period and had a lower leg that was twice as long as its thigh.
An artist’s illustration of Fujianvenator prodigiosus, an avialan theropod who lived during the Late Jurassic period and had a lower leg that was twice as long as its thigh. ZHAO Chuang

A newly discovered early bird-like dinosaur species is filling in some of the holes in the dinosaur-to-bird evolutionary story. The new species, named Fujianvenator prodigiosus, has a strange mixture of physical features shared with other extinct prehistoric animals from therapod dinosaurs to birdlike troodontids. This unique beast was described in a study published September 6 in the journal Nature. 

[Related: Birds are dinosaurs, and this fossil detective has rooms full of bones to prove it.]

Birds diverged from theropod dinosaurs by the Late Jurassic (about 161 million to 146 million years ago), but the general understanding of the earliest evolution of the clade comprising most modern birds, known as Avialae, has been slowed due to a limited diversity of fossils from the Jurassic. No known avialans have been reported from the Yanliao Biota paleontological site in northeast China, which dates back to the Middle–Late Jurassic about 166–159 million years ago or in the the slightly younger German Solnhofen Limestones, which preserves an early genus of avian dinosaurs called Archaeopteryx. This leaves a gap of about 30 million years before the oldest known record of Cretaceous birds. 

Jurassic era avialans are a critical key to deciphering the evolutionary origin of the avialan body,  and this elusive group is key to piecing together the origin of birds. That’s where the fossilized remains of the 148 to 150-million-year-old avialan theropod Fujianvenator prodigiosus comes in. It has some physical traits shared with extinct avialans, the small and bird-like troodontids that lived during the Cretaceous Period, and theropod dinosaurs called dromaeosaurids that were similar to raptors and also lived during the Cretaceous. According to the team on this study, this mixture shows the impact of evolutionary mosaicism–different rates of evolutionary change in body structures and function– in early bird evolution.

An artist's illustration of the 150-million-year-old avialan theropod Fujianvenator prodigiosus. CREDIT: ZHAO Chuang
An artist’s illustration of the 150-million-year-old avialan theropod Fujianvenator prodigiosus. CREDIT: ZHAO Chuang.

A joint research team from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences in Beijing and the Fujian Institute of Geological Survey (FIGS) described and the avialan theropod that was found in Zhenghe County, Fujian Province in southeastern China.

“Our comparative analyses show that marked changes in body plan occurred along the early avialan line, which is largely driven by the forelimb, eventually giving rise to the typical bird limb proportion,” study co-author and paleontologist Min Wang from IVPP said in a statement. “However, Fujianvenator is an odd species that diverged from this main trajectory and evolved bizarre hindlimb architecture.”

[Related: Birds are so specialized to their homes, it shows in their bones.]

During the Late Jurassic-Early Cretaceious, southeastern China saw some intense tectonic activities that resulted in a lot of movement of magma below the Earth’s surface. This created some deep basins with the Earth including where Fujianvenator was found.

Fujianvenator prodigiosus was likely about the size of a present day pheasant and had a tibia (lower leg) that is twice as long as its femur (thigh), which is a previously unknown condition for non-avian dinosaurs. This suggests that the bird was either a high-speed runner or a long-legged wader and it likely lived in swamps. This new finding contrasts with other early avialans, which are believed to have been more tree and sky-dwelling.  

Fujianvenator’s remains were found among a diverse collection of vertebrate fossils dominated by aquatic and semiaquatic species, including turtles and ray-finned fish. The authors named this fossil collection the Zhenghe Fauna. This diverse array of inhabitants and environment suggests that it was the site of emerging Jurassic vertebrate fauna around the time when Fujianvenator was there. This find and timing fills in an important gap in our understanding of ecosystems in Late Jurassic Northeast Asia and the team plans to continue to explore Zhenghe and other nearby areas.

The post Leggy dinosaur species could be the latest feathery clue to bird evolution appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Our tree-climbing ancestors evolved our abilities to throw far and reach high https://www.popsci.com/science/shoulder-evolution-primates/ Wed, 06 Sep 2023 12:00:00 +0000 https://www.popsci.com/?p=568244
Two monkeys sitting in a forest. Dartmouth researchers report that apes and early humans evolved more flexible shoulders and elbows than monkeys to safely get out of trees. For early humans, these versatile appendages would have been essential for gathering food and deploying tools for hunting and defense.
Dartmouth researchers report that apes and early humans evolved more flexible shoulders and elbows than monkeys to safely get out of trees. For early humans, these versatile appendages would have been essential for gathering food and deploying tools for hunting and defense. Luke Fannin, Dartmouth

Football season really started 20 million years ago with this evolutionary quirk.

The post Our tree-climbing ancestors evolved our abilities to throw far and reach high appeared first on Popular Science.

]]>
Two monkeys sitting in a forest. Dartmouth researchers report that apes and early humans evolved more flexible shoulders and elbows than monkeys to safely get out of trees. For early humans, these versatile appendages would have been essential for gathering food and deploying tools for hunting and defense.
Dartmouth researchers report that apes and early humans evolved more flexible shoulders and elbows than monkeys to safely get out of trees. For early humans, these versatile appendages would have been essential for gathering food and deploying tools for hunting and defense. Luke Fannin, Dartmouth

The mechanics of how athletes like New York Giants quarterback Daniel Jones’ are able to throw a perfect spiral or how wide receiver Darius Slayton may extend his elbow to reach for the catch may have ancient roots. These skills may have first evolved as a natural braking system for our primate ancestors who simply needed a safe way to get out of trees

[Related: Chilly climates may have forged stronger social bonds in some primates.]

In a study published September 6 in the journal Royal Society Open Science, a team from Dartmouth found that apes and early human ancestors likely evolved free-moving shoulders and flexible elbows as a way to slow their descent from trees while gravity pulled down on their bodies. Versatile appendages that could throw spears for hunting and defense, climb trees, and gather food were essential for survival—especially as early humans left forests for grassy savannas.

“There’s a lot we still don’t understand about the origin of apes,” study co-author and Dartmouth University paleoanthropologist Jeremy DeSilva tells PopSci. “There was a common ancestor to monkeys and apes that lived about 25 to 30 million years ago and then there was a divergence and now we have these two different kinds of primates. But why the convergence?”

One of the possibilities is different ecological, physical, and behavioral niches related to primate size. The first apes evolved about 20 million years ago and are bigger than other early primates. Getting out of a tree presented a new set of challenges for these bigger primates, since typically the bigger the animal, the greater the risk of injury from a fall. Natural selection would have eventually favored anatomies that allowed early apes to safely descend from the trees. 

In the study, the team used sports-analysis and statistical software to compare videos and still-frames of chimpanzees and small monkeys called mangabeys climbing in the wild. They saw that mangabeys and chimps climbed up the trees similarly, with their shoulders and elbows mostly bent close to the body. 

However, when it was time to climb down, chimpanzees extended their arms above their heads to hold onto branches, similar to how a person going down a ladder, as their weight pulls them down. This process called “downcliming” appears to be significant in the evolution of apes and early humans.

“Our study broaches the idea of downclimbing as an undervalued, yet incredibly important factor in the diverging anatomical differences between monkeys and apes that would eventually manifest in humans,” study co-author and Dartmouth graduate student Luke Fannin said in a statement

[Related: How to hike downhill safely and comfortably.]

These flexible shoulders and elbows passed on from ancestral apes would have allowed early humans such as Australopithecus to climb into trees at night for safety and then come down in the daylight unscathed. Once Homo erectus could use fire to protect itself at night, the human form took on the broader shoulders capable of a 90-degree twist that worked with free moving shoulders and elbows to make human ancestors excellent shots with a spear for hunting.

“The idea that downclimbing could be such a strong evolutionary force as to change the nature of how our bones and range of motion evolved was very fascinating,” study co-author Mary Joy tells PopSci. “Not a lot of the field really thinks about downclimbing as its own motion with implications on natural selection.” Joy brought her experience as a trail runner and athlete to the study to bring in a different perspective to looking at biological sciences and evolution. 

The team also used skeletal collections from Harvard University to study the anatomical structure of chimpanzee arm alongside remains in The Ohio State University’s collections to study  mangabey arms. Chimpanzees are more like humans than mangabeys and have a shallow ball-and-socket shoulder that allows for a greater range of movement. Chimps can also fully extend their arms due to a reduced length of bone located just behind the elbow called the olecranon process.

Three mangabeys in a tree. The researchers used sports-analysis software to compare the climbing movements of chimpanzees and mangabeys (pictured). They found that chimps support their greater weight when climbing down by fully extending their arms above their heads thanks to shallow, rounded shoulder joints and shortened elbow bones that are similar to those in humans. Mangabeys, which are built more like cats or dogs, have less flexibility and position their shoulders and elbows roughly the same when climbing up or down. CREDIT: Luke Fannin, Dartmouth
The researchers used sports-analysis software to compare the climbing movements of chimpanzees and mangabeys (pictured). They found that chimps support their greater weight when climbing down by fully extending their arms above their heads thanks to shallow, rounded shoulder joints and shortened elbow bones that are similar to those in humans. Mangabeys, which are built more like cats or dogs, have less flexibility and position their shoulders and elbows roughly the same when climbing up or down. CREDIT: Luke Fannin, Dartmouth.

Mangabeys and other monkeys are built more like four-legged animals like cats and dogs, with deep pear-shaped shoulder sockets and elbows that have a protruding olecranon process, which makes the joint look like the letter L. These joints are more stable, but they have a more limited range of movement and flexibility.

The analysis showed that the angle of a chimp’s shoulders was 14 degrees greater during their descent than when scaling a tree. The arm also extended outward at the elbow 34 degrees more when climbing down a tree than climbing up. The angles at which the mangabeys positioned their shoulders and elbows were only about four degrees or less when ascending a tree versus downclimbing.

“If cats could talk, they would tell you that climbing down is trickier than climbing up and many human rock climbers would agree. But the question is why is it so hard,” study co-author and 

anthropologist and evolutionary biologist Nathaniel Dominy said in a statement. “The reason is that you’re not only resisting the pull of gravity, but you also have to decelerate. 

[Related: Lucy, our ancient human ancestor, was super buff.]

According to DeSilva, the question of “how did we not see this before” in regards to downclimbing was one of the most surprising parts of the study. The fresh eyes of both Joy and graduate student Fannin were crucial in uncovering one of evolution’s hidden wonders. 

“Our evolutionary ancestry is this wonderful example of how evolution just sort of tinkers and tweaks pre-existing forms,” says DeSilva. “Our bodies are bodies that have been just tweaked and modified through natural selection over millions of years, to give us the bodies we have now, but there are all these wonderful echoes of our ancestry in our bodies today.”

The post Our tree-climbing ancestors evolved our abilities to throw far and reach high appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Paper cups still use plastic—and it’s a problem for the planet https://www.popsci.com/environment/paper-cups-environment-plastic/ Tue, 05 Sep 2023 18:00:00 +0000 https://www.popsci.com/?p=568035
Fiver different types of paper cups sitting are sitting on a table. Some have eco-friendly labeling and one warns of plastic chemical leaching. Paper cups are replacing plastic cups on the market, but paper cups can also be toxic to living organisms, shows a new study from the University of Gothenburg.
Paper cups are replacing plastic cups on the market, but paper cups can also be toxic to living organisms, shows a new study from the University of Gothenburg. Olof Lönnehed

A layer of plastic on paper cups used to keep hot drinks away from skin could be leaching toxic chemicals.

The post Paper cups still use plastic—and it’s a problem for the planet appeared first on Popular Science.

]]>
Fiver different types of paper cups sitting are sitting on a table. Some have eco-friendly labeling and one warns of plastic chemical leaching. Paper cups are replacing plastic cups on the market, but paper cups can also be toxic to living organisms, shows a new study from the University of Gothenburg.
Paper cups are replacing plastic cups on the market, but paper cups can also be toxic to living organisms, shows a new study from the University of Gothenburg. Olof Lönnehed

Much like the paper straws that were ushered in to reduce the use of single use plastic straws, paper cups may also be problematic for the environment. A study published in the August issue of the journal Environmental Pollution found that many paper cups are coated with a thin coating of plastic. This layer keeps liquids from seeping into the paper, but can emit toxic substances.

[Related: ‘Forever chemicals’ detected in paper and plastic straws.]

In the study, a team of researchers from the University of Gothenburg in Sweden tested the effect of disposable cups made from different materials on the larvae of the butterfly mosquito. The paper and plastic cups were placed in temperate water or sediment and were left to leach for up to four weeks. Then, the larvae were housed in aquariums that had the water or sediment that had been tainted by paper and plastic cups. 

The larvae grew less in the sediment regardless of the source of contamination.The exposure to the tainted water from both cup types appeared to hinder their development. 

“All of the mugs negatively affected the growth of mosquito larvae,” study co-author and ecotoxicologist and fish biologist Bethanie Carney Almroth said in a statement

Since paper isn’t resistant to either water or fats, the paper used to package foods and liquids needs to be treated with a top coat that protects the paper and user from what is inside. The plastic film is often made of a type of bioplastic called polylactide (PLA). Bioplastics are produced from renewable resources instead of much more frequently used fossil fuels. PLA is commonly produced from corn, cassava, or sugarcane and while it is often believed to be biodegradable, this study shows that it can still be toxic.

“Bioplastics do not break down effectively when they end up in the environment, in water. There may be a risk that the plastic remains in nature and resulting microplastics can be ingested by animals and humans, just as other plastics do. Bioplastics contain at least as many chemicals as conventional plastic,” says Carney Almroth.

Some of the chemicals in plastics are known to be toxic, while others are still unknown. According to the team, paper presents a potential health hazard compared to other materials and it is becoming more common as society shifts away from plastics and people become exposed to the chemicals in the plastic through contact with food. The team did not perform a chemical analysis to see which substances had leached from the paper cups and into the water and damaged the larvae, but they suspect it was a mixture of various chemicals. 

[Related: Plastic garbage in the sea is a life raft for pathogens.]

The carbon footprint of reusable plastic cups is tough to pin down, and scientists don’t know if they are better in terms of chemical leaching compared to their trashable counterparts. Some estimates find that a reusable cup must be used between 20 and 100 times to offset its greenhouse gas emissions when compared to a disposable cup, due to the high amount of energy needed to make these popular options durable and the hot water required to keep it clean. However, these reusable options do last longer and have better potential to offset the impacts of disposable cups. 

“When disposable products arrived on the market after the Second World War, large campaigns were conducted to teach people to throw the products away, it was unnatural to us! Now we need to shift back and move away from disposable lifestyles. It is better if you bring your own mug when buying take away coffee. Or by all means, take a few minutes, sit down and drink your coffee from a porcelain mug,” said Carney Almroth.

Currently, the United Nations is working to negotiate a binding agreement to end the spread of plastics.  Carney Almroth is a member of a council of scientists called the Scientists Coalition for an Effective Plastics Treaty (SCEPT) which contributes up-to-date scientific evidence to these negotiations. SCEPT is calling for a rapid phasing out of unnecessary and problematic plastics, as well as added vigilance to avoid the repeat mistakes of replacing one bad product with another.

“We at SCEPT are calling for transparency requirements within the plastics industry that forces a clear reporting of what chemicals all products contain, much like in the pharmaceutical industry,” said Carney Almroth. “But the main goal of our work is to minimize plastic production.”

The post Paper cups still use plastic—and it’s a problem for the planet appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Couples often share more common traits than we might think https://www.popsci.com/science/dating-similar-traits/ Tue, 05 Sep 2023 14:05:00 +0000 https://www.popsci.com/?p=567898
A couple standing on the beach in warm sunlight.
Traits such as and religious attitudes, level of education, and certain measures of IQ showed particularly high correlations in a new study. Deposit Photos

Most opposite sex romantic partners share traits ranging from drinking habits to political leanings.

The post Couples often share more common traits than we might think appeared first on Popular Science.

]]>
A couple standing on the beach in warm sunlight.
Traits such as and religious attitudes, level of education, and certain measures of IQ showed particularly high correlations in a new study. Deposit Photos

Finding lasting love can be really difficult. We’ve all heard the annoying adages like “there’s plenty of fish in the sea,” not to mention the old “opposites attract” chestnut. However, many people tend to end up being quite similar to their partners, according to the results of a study published August 31 in the journal Nature Human Behaviour.

[Related: Social relationships are important to the health of aging adults.]

The new research included numerous studies dating back more than a century. The team examined 130 traits from millions of couples, ranging from political leanings to age of first sexual intercourse to substance use habits. For between 82 and 89 percent of traits analyzed, partners were more likely than not to be similar. In only one part of the analysis, and for only three percent of studied traits, did individuals tend to be coupled with someone who is demonstrates an opposing trait.

In addition to shedding light on some of those unseen forces that may shape human relationships, this research could have some important implications for the field of genetic research.

“A lot of models in genetics assume that human mating is random. This study shows this assumption is probably wrong,” study co-author and University of Colorado at Boulder psychologist and neuroscientists Matt Keller, said in a statement. Keller noted that a tendency called assortative mating—when individuals with similar traits couple up—can actually skew findings of genetic studies.

To find their results, the team conducted both a meta-analysis of previous research and their own original data analysis. In the meta-analysis, they examined 22 traits across 199 studies of millions of male-female co-parents, engaged pairs, married pairs, or cohabitating pairs. The oldest study in this analysis was conducted back in 1903. They also used a dataset called the UK Biobank to analyze 133 traits across almost 80,000 opposite-sex pairs in the United Kingdom.

Same sex couples were not included in the research because the patterns in these types of partnerships may differ significantly. The authors are now pursuing those relationships in a separate study.

[Related: These fuzzy burrowers don’t need oxytocin to fall in love.]

Traits such as political and religious attitudes, level of education, and certain measures of IQ showed particularly high correlations. For example, on a scale of 0 meaning no correlation and 1 meaning couples always share a trait, the correlation for political values was .58. Traits surrounding substance use also showed high correlations, with heavy drinkers, smokers, and teetotalers tending to strongly pair with those who share similar traits. Traits like height and weight, medical conditions, and personality showed much lower but still positive correlations. For example, the correlation for neuroticism was .11.

Interestingly, some traits, such as extroversion, did not have much of a correlation.

“People have all these theories that extroverts like introverts or extroverts like other extroverts, but the fact of the matter is that it’s about like flipping a coin: Extroverts are similarly likely to end up with extroverts as with introverts,” study co-author and University of Colorado at Boulder PhD student Tanya Horwitz said in a statement

The meta-analysis found “no compelling evidence” that on any trait that opposites attract. However, in the sample from the UK Biobank, the team did find a handful of traits in which there seemed to be a small negative correlation, including hearing difficulty, tendency to worry, and whether someone is more of a morning person or night person (called chronotype). Additional studies will be needed to understand those findings, according to the team. 

Some of the less-frequently studied traits including number of sexual partners and whether an individual had been breastfed as a child also showed some correlation.

“These findings suggest that even in situations where we feel like we have a choice about our relationships, there may be mechanisms happening behind the scenes of which we aren’t fully aware,” said Horwitz.

According to the authors, couples could share traits for a variety of reasons, including growing up in a similar area. Some people are simply attracted to those who are similar based on the traits studied, and some couples grow more similar the longer they stay in the relationship. 

These pairings could lead to some downstream genetic consequences. For example, if short people are more likely to produce offspring with a similar height and vice versa, there could be more people at the height extremes in the next generation. This same thing apply for medical, psychiatric, and other traits according to Horowitz. 

Some of the social implications include those with similar educational backgrounds continuing to pair up, which could widen socioeconomic divides.

The team cautions that the correlations found were fairly modest and should not be overstated or misused to promote an agenda. Assortative mating has historically been dangerously co-opted by the eugenics movement, which gained traction during the early 20th century.

The post Couples often share more common traits than we might think appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The next frontier in saving the world’s heaviest parrots: genome sequencing https://www.popsci.com/environment/genomic-sequencing-kakapo/ Fri, 01 Sep 2023 12:00:00 +0000 https://www.popsci.com/?p=567328
A kākāpō sitting in its burrow. They can live up to 90 years and forage on the ground for food since they are flightless birds.
A kākāpō sitting in its burrow. They can live up to 90 years and forage on the ground for food since they are flightless birds. Jake Osborne

Kākāpō's were once considered 'doomed to early extermination.' Now these quirky New Zealand birds are slowly making a comeback.

The post The next frontier in saving the world’s heaviest parrots: genome sequencing appeared first on Popular Science.

]]>
A kākāpō sitting in its burrow. They can live up to 90 years and forage on the ground for food since they are flightless birds.
A kākāpō sitting in its burrow. They can live up to 90 years and forage on the ground for food since they are flightless birds. Jake Osborne

New Zealand’s quirky and critically endangered kākāpō have begun to return to the country’s mainland for the first time in almost 40 years. Kākāpōs are the heaviest parrots in the world, with some exceeding six pounds, and they have a lifespan of up to 90 years. Like penguins and ostriches, they can’t fly, so kākāpōs climb trees and forage on the ground for nuts and seeds to eat.  

[Related: A flightless parrot is returning to mainland New Zealand after a 40-year absence.]

The big, green, nocturnal birds used to be widespread across New Zealand, but were hunted to near extinction and threatened by non native predators like cats and dogs. Popular Science magazine described these “curious” green birds as already being “doomed to early extermination” all the way back in April 1895

The roughly 250 or so individual birds that are left are managed by New Zealand’s Department of Conservation (DOC) and the South Island’s Ngāi Tahu tribe on five islands that are free of predators. Now equipped with 21st Century genetic science, research platform Genomics Aotearoa is funding high-quality genetic sequencing of almost the entire kākāpō population. The results of an early study of how these full genomic sequences will help manage the health of these iconic birds was published August 28 in the journal Nature Ecology & Evolution.

Establishing genetic sequencing methods is not expected to only play a part in kākāpō survival, but other endangered species throughout New Zealand and the rest of the world. Conservation genomics is part of a growing trend in the field. In 2019, a team from San Diego and the University of Hawaii used advanced DNA sequencing technology to create a nearly complete genome assembly for Hawaii’s only remaining lineage of the crow family ‘alalā (Corvus hawaiiensis). The sequencing gave conservationists critical clues into the disease susceptibility, population-level diversity, and genetic load of the alalā to better inform their policies.

A close up of a female bird named Solstice. Solstice is one of New Zealand’s largest female kākāpōs, often weighing 4.5 pounds, even without the help of supplementary feeding. CREDIT: DOC.
Solstice is one of New Zealand’s largest female kākāpōs, often weighing 4.5 pounds, even without the help of supplementary feeding. CREDIT: DOC.

The same information could help the kākāpō thrive. This work over the last year has produced two very significant outcomes. First, it has given the team an in-depth understanding of kākāpō biology. It has also produced a high-quality code and reusable pipeline, which allows other researchers to rapidly use these methods in their own work and advanced New Zealand’s genomic capability.

“Kākāpō suffer from disease and low reproductive output, so by understanding the genetic reasons for these problems, we can now help mitigate them,” Andrew Digby, the DOC’s Science Advisor for Kākāpō Recovery, said in a statement. “It gives us the ability to predict things like kākāpō chick growth and susceptibility to disease, which changes our on-the-ground management practices and will help improve survival rates.”

[Related: Eavesdropping on pink river dolphins could help save them.]

Diby added that the Kakapo125+ project is another example of how genetic data can assist population growth. The 125 refers to the number of kākāpō living when the project began in 2015. “The novel genetic and machine learning tools developed can be applied to improve the productivity and survival of other taonga under conservation management,” said Digby.

The sequencing technique was developed by University of Otago microbial scientist Joseph Guhlin and an international team of researchers and could have impacts outside of New Zealand. 

“Using technology created by Google, we have achieved what is likely the highest quality variant dataset for any endangered species in the world,” said Guhlin. “This dataset is made available, through DOC and Ngai Tahu, for future researchers working with kākāpō.”

The post The next frontier in saving the world’s heaviest parrots: genome sequencing appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Maine’s puffins show another year of remarkable resiliency https://www.popsci.com/environment/puffin-maine-rebound/ Thu, 31 Aug 2023 15:00:00 +0000 https://www.popsci.com/?p=567239
Two Atlantic puffins stand on a white rock above the ocean, with another group of puffins in the background, Atlantic puffins are sometimes nicknamed “sea parrots,” and their chicks hatch in Maine in early July.
Atlantic puffins are sometimes nicknamed “sea parrots,” and their chicks hatch in Maine in early July. Deposit Photos

Despite enormous challenges from climate change, the fledgling seabirds had their second consecutive rebound year.

The post Maine’s puffins show another year of remarkable resiliency appeared first on Popular Science.

]]>
Two Atlantic puffins stand on a white rock above the ocean, with another group of puffins in the background, Atlantic puffins are sometimes nicknamed “sea parrots,” and their chicks hatch in Maine in early July.
Atlantic puffins are sometimes nicknamed “sea parrots,” and their chicks hatch in Maine in early July. Deposit Photos

For the second year in a row, the Atlantic puffins living on the rocky islands off Maine’s coast had a rebound year for fledgling chicks, all in the face of record warm waters due to climate change. This second consecutive rebound year is welcome news, after 90 percent of nesting puffins failed to raise a single chick in 2021 while the climate change in New England has put this species, and others like humpback whales and the zooplankton at the base of the Gulfs food web, in jeopardy.

[Related: Cyclones can be fatal for seabirds, but not in the way you think.]

The Gulf of Maine and its bays are among the world’s fastest-warming bodies of water. Since the early 1980s, it has warmed about four degrees Fahrenheit, while the global ocean has risen by about 1.5 degrees Fahrenheit in the same period of time. The rising heat has affected the fish stocks in the area that puffins and other species rely on. Haddock used to make up a large portion of puffin diets, but populations have fluctuated in recent years, first increasing in 2017 due to federal management to this year showing signs of a decrease

However, a small eel-like fish called the sand lance has been abundant this year. The fish are only about four to eight inches long, but are high in fats and make them a great forage fish for seabirds. A 2020 study found that 72 Atlantic Ocean animal species from whales to bluefish to gannets eat sand lances in the waters from Greenland to North Carolina. 

According to the Maine Monitor, the sand lance were less abundant in the region by mid-July, but the puffins were found feasting on a mixture of haddock, hake, and redfish depending upon where they were. Don Lyons, the director of conservation science at National Audubon Society’s Seabird Institute, told the Maine Monitor, “I can’t offhand recall such a seamless transition from one fish to another. It tells you a lot about the resourcefulness of puffins and at the same time, it’s a reminder of how much we still don’t know of when and where food is for seabirds, and how fast that all can change.”

Lyons estimated that there are now as many as 3,000 puffins in Maine, what he calls a stable population. In 2022, about two-thirds of the puffins fledged—or developed wing feathers that are large enough for flight. While they didn’t reach that number this year, they had a better season than the catastrophic 2021 season despite a rainy and hot summer. The Audubon Society’s Project Puffin has been monitoring the population for 50 years and uses decoys, mirrors, and recordings to attract the birds to suitable nesting sites to raise the next generation of birds.

This cozy burrow 21 miles off the coast of Maine is where Atlantic puffins breed and raise their young. CREDIT: Audubon/Explore.org

Maine’s puffin population was once as low as 70 pairs on Matinicus Rock 25 miles off the coast. They were hunted for their feathers and meat in the early 20th Century, but by the 1970’s Audubon conservationists worked to grow puffin colonies in the state, by bringing chicks from Canada to Maine’s Eastern Egg Rock. Puffins still call that tiny rock home, in addition to Seal Island and Petit Manan Island. Live cams keep an eye on them and volunteers and scientists monitor their progress every year.

Currently, Maine’s population are the only breeding Atlantic puffins in the United States. The species lives in areas of the North Atlantic from Maine and Canada eastward to Europe. Iceland, a country well known for its puffins, has seen the puffin populations decline by 70 percent in 30 years largely due to lack of food due to warming oceans.

[Related: Emperor penguins suffer ‘unprecedented’ breeding failure as sea ice disappears.]

While this ability to reproduce despite huge environmental changes does speak to their resiliency as a species, puffins are still at risk of long term dangers from marine heat waves, sea level rise threatening nesting sites, and a loss of food.  

“The problem with climate change is these breeding failures and low breeding productivity years are now becoming chronic,” Bill Sydeman, president and chief scientist of the California-based Farallon Institute, told the AP. “There will be fewer young birds in the population that are able to recruit into the breeding population.”

Some of the ways to help Maine puffin population and other coastal birds in the face of this constant uncertainty include Audubon’s adopt-a-puffin program and advocating for your local seabirds by contacting regional elected officials.

The post Maine’s puffins show another year of remarkable resiliency appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Florida’s aquatic animals prepare early for storms like Hurricane Idalia https://www.popsci.com/science/can-animals-feel-hurricanes/ Wed, 28 Sep 2022 21:00:00 +0000 https://www.popsci.com/?p=473702
A manatee swims through blue water, surrounded by a school of fish
Even though manatees know what to do in a hurricane, their curiosity can get them in trouble. Keith Ramos, USFWS

Sharks, manatees, and gators don’t need an evacuation order to know when a storm might be trouble.

The post Florida’s aquatic animals prepare early for storms like Hurricane Idalia appeared first on Popular Science.

]]>
A manatee swims through blue water, surrounded by a school of fish
Even though manatees know what to do in a hurricane, their curiosity can get them in trouble. Keith Ramos, USFWS

Weeks before we even think about getting sandbags or boarding up windows to prevent hurricane damage, an underwater evacuation begins. Sharks, sea snakes, and other wildlife will make preparations to escape becoming trapped or hurt as massive storms approach a coast. 

Much of Florida’s aquatic life—including species as diverse as manatees and alligators—know what to do in a storm like Hurricane Idalia. After all, these native animals have had millions more years of practice than us. But those age-old skills will only become more useful as hurricanes become more intense from climate change. 

“Aquatic animals respond to storms for the same reason we do—to avoid injury, death, and the destruction from hurricanes,” says Bradley Strickland, a postdoctoral researcher who studies aquatic animal response to hurricanes and climate change at William and Mary’s Virginia Institute of Marine Science. Still, some animals are better equipped to weather or evade the storms than others. And sharks are among the best. 

[Related: Sharks are learning to love coastal cities]

Even when a hurricane is far on the horizon, the atmosphere changes: the barometric pressure drops. “From two weeks out of a hurricane, sharks can actually detect the change and start heading for deeper water,” says Neil Hammerschlag, director of the shark research and conservation program at the University of Miami. The air around a hurricane decreases in pressure as a storm strengthens and wind speeds increase. Sharks can sense that, allowing them to flee long before Florida’s human residents were given mandatory evacuation orders. 

“Similar to the way we use meteorological technologies and observations about the changing wind and temperature before a storm, aquatic animals have ways to sense the approach of a storm,” Strickland says. Sharks use their sensitive inner ears to detect a gathering storm’s pressure changes, he adds. And, because of their incredible swimming abilities (some can swim up to 45 miles per hour), they can quickly escape oncoming storms—that is, if they choose to. 

Smaller shark species and juveniles opt to escape to deeper water to avoid the turbulence near the shore. For them, “staying in shallow water would be like a shark tornado,” Hammerschlag says, because hurricanes can push currents up to 300 feet below the ocean’s surface. For smaller sharks that remain in the shallows, they risk being swept inland.

Yet other larger predators, like tiger sharks that grow up to 14 feet and 1,400 pounds, view hurricanes as an opportunity for the ultimate sea smorgasbord. By tracking tiger sharks during and after Hurricane Irma, Hammerschlag noticed that “not only did they not run away, but they may have been taking advantage of the things that were dying, either birds that got washed into the water or fish and invertebrates that collided with debris.” After the storm, he adds, there were “higher numbers of tiger sharks in the area for about two weeks.”

For aquatic and semi-aquatic animals that can’t ride out the storm or swim beyond its reach, finding shelter may be the superior option for survival. “Sea snakes will seek refuge in volcanic rocks to avoid typhoons,” Strickland says. “Alligators likely hunker down to weather a storm by finding easy to get in and out of places,” he adds. Some smaller gators may get swept away by hurricanes; others might change their foraging patterns altogether to stay safe. 

Other species may be less lucky. After Hurricane Ian struck Florida in 2022, clean-up crews had to remove debris from the holes where burrowing owls live, since the threatened birds can’t claw through the trash on their own, as one wildlife rehabilitation expert told CNN. And when storms shove salty seawater inland, increases in salinity can disturb trees or turtles that dwell in freshwater ecosystems.

Along the coast, graceful manatees, too, have been found in particularly sticky situations post-hurricane. Although weight-wise they are comparable to a tiger shark, speed-wise they are definitely not, cruising up to 15 mph only if they really push it. And try as they might to hunker down before a storm, this doesn’t always work out for them. Instead, they may get swept out of coastal waters by floods. Others, curious to explore new streams, have been found stuck in smaller ponds, forests, or even by roads after post-storm swims through flooded areas. Yet hurricanes rank low on the dangers to manatees, a threatened keystone species in Florida often imperiled by watercraft.

Even if Hurricane Idalia is the first big tempest that a Floridian animal will experience, the odds are good it will take some kind of action. “We see animals evacuating the places they call home in advance of a major storm despite, in some cases, having never experienced a hurricane within their lifetime,” Strickland says. “This shows just how innate it is to protect yourself from a storm by preparing or fleeing compared to just waiting it out.”

This post has been updated. It was originally published on September 28, 2022.

The post Florida’s aquatic animals prepare early for storms like Hurricane Idalia appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
A three-eyed organism roamed the seas half a billion years ago https://www.popsci.com/environment/three-eyed-cambrian-arthropod/ Wed, 30 Aug 2023 13:00:00 +0000 https://www.popsci.com/?p=566874
An artistic reconstruction of Kylinxia, a relative of present day insects and crustaceans. It has two extended forelimbs, a round and segmented body, and three eyes on its head.
An artistic reconstruction of Kylinxia, a relative of present day insects and crustaceans. X. Wang

The shrimpy creature is filling in some evolutionary gaps.

The post A three-eyed organism roamed the seas half a billion years ago appeared first on Popular Science.

]]>
An artistic reconstruction of Kylinxia, a relative of present day insects and crustaceans. It has two extended forelimbs, a round and segmented body, and three eyes on its head.
An artistic reconstruction of Kylinxia, a relative of present day insects and crustaceans. X. Wang

A newly discovered three-eyed relative is disappointingly unrelated to the eerie three-eyed ravens of Game of Thrones. But this Cambrian-era beast is a relative of today’s insects and boasts some fearsome limbs. The unique fossilized animal was described in a study published August 28 in the journal Current Biology

[Related: This ancient ‘mothership’ used probing ‘fingers’ to scrape the ocean floor for prey.]

The animal, scientific name Kylinxia, was found in 520 million year old rocks in a fossil deposit called the Cambrian Chengjiang biota near the town of Chengjiang in southern China. More than 250 species of exceptionally well-preserved fossil organisms have already been described from this location, which gives scientists a glimpse of what was going on in the world’s oceans as they developed. 

Importantly, Kylinxia is filling in some evolutionary gaps in our understanding of the evolution of animals known as arthropods. This phylum of animals includes insects, crabs, shrimp, scorpions, spiders, and centipedes among others. Arthropods have an exoskeleton made of a tough material called chitin that is mineralized with calcium carbonate, as well as a body divided into segments and paired jointed appendages. They are considered some of Earth’s most successful species and over 85 percent of all known animal species are classified as arthropods.

Kylinxia was about the size of a large shrimp, had a pair of limbs that it likely used to catch prey, and a signature trio of eyes on its head. 

“Most of our theories on how the head of arthropods evolved were based on these early-branching species having fewer segments than living species,” Greg Edgecombe, a co-author of the study and arthropod evolution expert at London’s Natural History Museum, said in a statement. “Discovering two previously undetected pairs of legs in Kylinxia suggests that living arthropods inherited a six-segmented head from an ancestor at least 518 million years ago.”

After its initial discovery, Kylinxia was imaged using a CT scanner. The scan revealed that more soft parts of the animals’ anatomy were also buried in the rock. While there are plenty of species of arthropods preserved in the fossil record, most fossils only preserve the hard skeletons. 

[Related: Newly discovered fossils give a whole new meaning to jumbo shrimp.]

“The preservation of the fossil animal is amazing,” study co-author and University of Leicester PhD student Robert O’Flynn said in a statement. “After CT-scanning we can digitally turn it around and literally stare into the face of something that was alive over 500 million years ago. As we spun the animal around, we could see that its head possesses six segments, just as in many living arthropods.”

CT images of the fossil animal Kylinxia zhangi from southern China, courtesy of Professor Yu Liu, Yunnan University. The animal is the size of a large shrimp, with its front end to the right. The top image clearly shows the segmentation of the body and the large eyes at the front. The bottom image shows the large frontal limbs extended.
CT images of the fossil animal Kylinxia zhangi from southern China, courtesy of Professor Yu Liu, Yunnan University. The animal is the size of a large shrimp, with its front end to the right. The top image clearly shows the segmentation of the body and the large eyes at the front. The bottom image shows the large frontal limbs extended. CREDIT: Professor Yu Liu, Yunnan University.

This new specimen was nearly complete, which enabled the team to identify the six segments that made up its body: the head, a second segment with its grasping limbs, and the other four segments which have a pair of jointed limbs.

“Robert and I were examining the micro-CT data as part of his doctoral thesis in the hope of refining and correcting previous interpretation of head structures in this genus, Kylinxia,” study co-author and Yunnan Key Laboratory for Palaeobiology paleobiologist Yu Liu said in a statement. “Amazingly, we found that its head is composed of six segments, as in, e.g., insects.”

The post A three-eyed organism roamed the seas half a billion years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
‘Alive and wriggling’ worm survived in woman’s body and brain for at least a year https://www.popsci.com/health/roundworm-parasite-human-brain/ Tue, 29 Aug 2023 14:00:00 +0000 https://www.popsci.com/?p=566489
A magnetic resonance image of the patient’s brain by fluid-attenuated inversion recovery showing an enhancing right frontal lobe lesion (left). A live third-stage larval form of Ophidascaris robertsi removed from the patient’s right frontal lobe (right).
A magnetic resonance image of the patient’s brain by fluid-attenuated inversion recovery showing an enhancing right frontal lobe lesion (left). A live third-stage larval form of Ophidascaris robertsi removed from the patient’s right frontal lobe (right). Hossain M/Kennedy KJ/Wilson HL

The parasite and larvae known to plague pythons highlights the growing danger of zoonotic transmission.

The post ‘Alive and wriggling’ worm survived in woman’s body and brain for at least a year appeared first on Popular Science.

]]>
A magnetic resonance image of the patient’s brain by fluid-attenuated inversion recovery showing an enhancing right frontal lobe lesion (left). A live third-stage larval form of Ophidascaris robertsi removed from the patient’s right frontal lobe (right).
A magnetic resonance image of the patient’s brain by fluid-attenuated inversion recovery showing an enhancing right frontal lobe lesion (left). A live third-stage larval form of Ophidascaris robertsi removed from the patient’s right frontal lobe (right). Hossain M/Kennedy KJ/Wilson HL

A neurosurgeon in Australia pulled a live, three inch-long worm from the brain of a 64-year-old woman in June 2022. The roundworm Ophidascaris robertsi is native to Australia and its larvae were also present in other organs in the patient’s body, including the liver and lungs. This is the first known human case of this parasitic infection and it is described in a case study published in the September 2023 issue of the journal Emerging Infectious Diseases.

[Related: Rare parasites found in 200 million-year-old reptile poop.]

The patient was first admitted to her local hospital in late January 2021 after experiencing three weeks of diarrhea and abdominal pain, followed by dry cough, night sweats, and fever. By June 2022, she was also experiencing forgetfulness and depression, and was referred to Canberra Hospital. While there, she underwent brain surgery when an MRI revealed some abnormalities.

Neurosurgeon Hari Priya Bandi was performing a biopsy when she used forceps to pull the parasite out of the woman’s brain. She immediately contacted Canberra Hospital infectious diseases physician Sanjaya Senanayake, saying “Oh my god, you wouldn’t believe what I just found in this lady’s brain—and it’s alive and wriggling,” Bandi said, according to The Guardian.

According to the case study, this is the first known human Ophidascaris infection and the first to involve the brain of a mammalian species. These worms are common to carpet pythons and they typically live in a python’s stomach and esophagus. Humans infected with Ophidascaris robertsi larvae would be considered accidental parasite hosts.

“Normally the larvae from the roundworm are found in small mammals and marsupials, which are eaten by the python, allowing the life cycle to complete itself in the snake,” Senanayake, who is also one of the co-authors of the case study, said in a statement

The researchers believe that the woman from southeastern New South Wales likely caught the roundworm after collecting Warrigal greens next to a nearby lake where a python had shed the parasite via its feces. The patient used the Warrigal greens for cooking and was probably infected with the parasite directly from touching the native grass or after consuming the greens.

A live third-stage larval form of Ophidascaris robertsi that is about 3 inches long and only one millimeter in diameter. The worm is seen under a stereomicroscope.
A live third-stage larval form of Ophidascaris robertsi that is about 3 inches long and only one millimeter in diameter. The worm is seen under a stereomicroscope. CREDIT: Hossain M/Kennedy KJ/Wilson HL.

According to the team, this world-first case highlights the danger of zoonotic transmission, or  diseases and infections that pass from animals to humans. This risk is growing as humans and animals start to live more closely together and habitats continue to overlap. 

“There have been about 30 new infections in the world in the last 30 years. Of the emerging infections globally, about 75 percent are zoonotic, meaning there has been transmission from the animal world to the human world. This includes coronaviruses,” Senanayake said. “This Ophidascaris infection does not transmit between people, so it won’t cause a pandemic like SARS, COVID-19, or Ebola. However, the snake and parasite are found in other parts of the world, so it is likely that other cases will be recognised in coming years in other countries.”

[Related: Mind-controlling ‘zombie’ parasites are real.]

The patient was sent home following the surgery with antiparasitic drugs and has not returned to hospital since, but they are monitoring her since this is such a new infection.  

Despite this case being extremely rare and spine-tingling, parasitic infection is actually extremely common. One of the most widespread types is pinworm (Enterobius vermicularis or threadworm), and some estimates say it is present in over one billion people around the world. They are specific to humans and can cause intense itching and are passed from person-to-person.

Two types of hookwormNecator americanis and Ancylostoma duadonale—are found in soil. Ancylostoma duodenale only lives in Australia typically in more remote communities. These worms typically enter the bloodstream through the feet.

According to Vincent Ho, an associate professor and clinical academic gastroenterologist at Western Sydney University, the best ways to avoid a parasitic infection include avoiding undercooked or raw pork, avoiding swimming or jumping into warm fresh bodies of water, practicing good hand washing, and wearing shoes in rural areas. 

The post ‘Alive and wriggling’ worm survived in woman’s body and brain for at least a year appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This is how space might disturb our immune systems https://www.popsci.com/science/space-immune-system-t-cell-genes/ Tue, 29 Aug 2023 10:00:00 +0000 https://www.popsci.com/?p=566320
A close-up astronaut outside the ISS above a blue slice of Earth.
Astronauts face various health effects while in space. NASA

Microgravity can have big changes to the genes of tiny, mighty T cells.

The post This is how space might disturb our immune systems appeared first on Popular Science.

]]>
A close-up astronaut outside the ISS above a blue slice of Earth.
Astronauts face various health effects while in space. NASA

Outer space is a rough place for the human body. The effects of space travel on our health pose substantial challenges to our future in the cosmos. Beyond Earth, astronauts literally lose bone and muscle while being exposed to potentially cancer-causing radiation. As they plan to go on longer trips—like to the moon and Mars, such as in NASA’s Artemis program—biologists need to prepare to keep these explorers safe on these extended voyages. 

Part of that is understanding exactly how space changes our bodies, from the macroscopic scale of our organs all the way down to our microscopic cells. To that end, Swedish biologists used an experiment here on Earth to simulate what happens to a human’s immune system in microgravity, the “weightlessness” experienced by space travelers. In a new research paper, published last week in Science Advances, the study authors report significant genetic changes to these guardian cells. 

The immune system is a crucial system in the human body, protecting us from a barrage of bacteria and viruses that dwell on our lively planet. If an astronaut’s immune system is damaged by the conditions of outer space, they may not be able to fight off infections when they return to Earth, and viruses that were lingering dormant in their system might even come back with a vengeance. 

[Related: Most of us have viruses sleeping inside us, and spaceflight wakes them up]

To study this on Earth, volunteer test subjects lived in space-like conditions for 21 days, essentially floating on what are called “dry immersion” beds. Researchers analyzed the participants’ blood and found that the genes in their T cells, a type of germ-fighting white blood cell, had altered in ways that might make them less effective at protecting against pathogens.

“T cells significantly changed their gene expression—that is to say, which genes were active and which were not—after seven and 14 days of weightlessness,” says co-author Lisa Westerberg, an immunologist from Sweden’s Karolinska Institute. “T cells began to resemble more so-called naïve T cells, which have not yet encountered any intruders. This could mean that they become less effective at fighting tumor cells and infections.” 

But there’s some good news. After a return to usual gravity, some of the cells’ changes reverted back to normal, Westerberg and her colleagues observed. This suggests human bodies have the potential to re-adapt once they’re back on Earth—at least, based on this research, for 21-day trips. It’s still unclear how longer-term spaceflight, like the perilous possibly years-long journey to and from Mars, would affect astronauts, their genes, and their immune systems.

[Related: Space stations could wage war on hitchhiking bacteria with self-cleaning tech]

This isn’t the first time that scientists have noticed changes in DNA due to space travel. NASA’s famous “Twins Study”, in which astronaut Scott Kelly lived aboard the International Space Station while his twin brother Mark Kelly remained on Earth, revealed that a year in space does affect and sometimes damage genes. We also know that space can harm blood cells and bone marrow, destroying them to the point that astronauts could experience so-called “space anemia.” (Although new research shows there might be a way to combat that, using fat cells.)

The truly novel bit of this new research is how it ties cellular changes to the human body’s broader functions, allowing researchers to brainstorm fixes to the problem at a cellular level. Several clinical trials are underway for new drugs and therapies to treat similar cell-related issues on Earth, including certain cancers, allergies, and autoimmune disorders. “We therefore think this study can pave the way for new treatments that reverse these changes to the immune cells’ genetic program,” says Westerberg.

Prepping for Mars or beyond, then, has the potential to help both Earth-bound patients and spacefaring travelers, providing a better understanding of the human body no matter where it is in the universe.

The post This is how space might disturb our immune systems appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
We’re finally figuring out how plants pass on genetic memories https://www.popsci.com/environment/plants-genetic-memories/ Mon, 28 Aug 2023 15:00:00 +0000 https://www.popsci.com/?p=565929
Lush and green mint leaves growing in a garden. To keep disruptive “jumping genes” quiet, some plant species use a process called methylation, which adds regulatory markers to the specific sites in the DNA and can be passed down through epigenetic memory.
To keep disruptive “jumping genes” quiet, some plant species use a process called methylation, which adds regulatory markers to the specific sites in the DNA and can be passed down through epigenetic memory. Deposit Photos

New research delves deeper into how plant proteins act like yo-yos to clear paths for important chemical markers.

The post We’re finally figuring out how plants pass on genetic memories appeared first on Popular Science.

]]>
Lush and green mint leaves growing in a garden. To keep disruptive “jumping genes” quiet, some plant species use a process called methylation, which adds regulatory markers to the specific sites in the DNA and can be passed down through epigenetic memory.
To keep disruptive “jumping genes” quiet, some plant species use a process called methylation, which adds regulatory markers to the specific sites in the DNA and can be passed down through epigenetic memory. Deposit Photos

When an animal is born or when a plant sprouts, the new organism has not only inherited its parent DNA, but also some genetic memories called epigenetic memories. These genetic recollections can come in the form of a changed gene expression due to the trauma from past environmental stress or the basic instructions on how specific chemical markers in the cell should be used in the genetic code they’ve inherited. Epigenetic inheritance is particularly common in plants and understanding how it works could help produce more robust plants to secure future food supplies in the face of global climate change. 

Scientists are getting closer to understanding the processes behind epigenetic inheritance in some plants and have discovered how a specific protein works to control this process. The findings are detailed in a study published August 28 in the journal Cell

[Related: Scientists can now tell if you had a ‘vanishing’ twin in the womb.]

In the study, a team from Cold Spring Harbor Laboratory and Howard Hughes Medical Institute looked deeper into how plants pass along markers that inactivate potentially disruptive genes called transposons. Transposons are also called “jumping genes.” When they’re switched on, they can move around and disturb the other genes within a cell. To keep transposons quiet and protect the rest of the genome, cells use a process called methylation, which adds regulatory markers to the specific DNA sites where the transposons are jumping around.

During methylation, a protein that silences genes called DDM1 clears the way for the specific enzymes that place important inherited chemical markers onto a plant’s new DNA strands. Plant cells need DDM1 to clear paths because their DNA is naturally very tightly packed together. To keep the DNA properly condensed, cells wrap their DNA around packing proteins called histones

“But that blocks access to the DNA for all sorts of important enzymes,” study co-author and plant biologist Rob Martienssen said in a statement. He added that before methylation can occur, “you have to remove or slide the histones out of the way.”

A green plant with about eight leaves grows out of soil. Arabidopsis thaliana is a plant species widely used to make fundamental biological discoveries. With the help of this versatile test subject, Cold Spring Harbor Laboratory scientists have now dug up the secrets of a process that helps control inheritance. CREDIT: Martienssen Lab/Cold Spring Harbor Laboratory.
Arabidopsis thaliana is a plant species widely used to make fundamental biological discoveries. With the help of this versatile test subject, Cold Spring Harbor Laboratory scientists have now dug up the secrets of a process that helps control inheritance. CREDIT: Martienssen Lab/Cold Spring Harbor Laboratory.

This is where DDM1 works. DDM1 slides DNA along the packing proteins to expose the sites in the plant cell that need methylation. Martienssen explained that this process is like the way a yo-yo glides along a string. The histones “can move up and down the DNA, exposing parts of the DNA at a time, but never falling off,” he said.

Martienssen and former colleague Eric Richards first discovered DDM1 30 years ago and this study is building upon that initial finding using a plant called Arabidopsis thaliana or thale cress.

In a series of genetic and biochemical experiments, Martienssen pinpointed the histones that DDM1 displaces. Next, study co-author Leemor Joshua-Tor used a process called cryo-electron microscopy to take detailed images of the enzyme interacting with DNA and the packing proteins associated with it. The team saw how DDM1 grabs onto particular histones to rearrange the packaged DNA.

[Related: Dying plants are ‘screaming’ at you.]

“An unexpected bond that ties DDM1 together turned out to correspond to the first mutation found all those years ago,” molecular biologist Joshua-Tor said in a statement

Their experiments also showed how DDM1’s preference for certain histones preserves epigenetic controls across generations of plants. A histone found only in pollen is resistant to DDM1 and acts as a placeholder during cell division. “It remembers where the histone was during plant development and retains that memory into the next generation,” Martienssen said. This knowledge will help new generations of plants keep jumpy transposons from disturbing the rest of the genome. 

Plants are potentially not the only organisms performing this process. Humans also depend on proteins similar to DDM1 to maintain DNA methylation. This new understanding of its role in epigenetics could one day explain how these proteins keep our own genomes both intact and functional, but more research is needed. 

The post We’re finally figuring out how plants pass on genetic memories appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Fossils of 10 unknown species found by sewage plant https://www.popsci.com/science/fossils-unknown-species/ Mon, 28 Aug 2023 12:00:00 +0000 https://www.popsci.com/?p=565893
A large group of white and gray fossils laid out on a blue tarp.
Some of the 266 fossil species found during a wastewater plant excavation in New Zealand. Bruce Hayward

Paleontologists sifted through thousands of 3 to 3.7 million year-old fossils in New Zealand, which also included great white shark teeth and the spine of an extinct sawshark.

The post Fossils of 10 unknown species found by sewage plant appeared first on Popular Science.

]]>
A large group of white and gray fossils laid out on a blue tarp.
Some of the 266 fossil species found during a wastewater plant excavation in New Zealand. Bruce Hayward

Fossils and ancient relics of the past turn up in some weird places, from the stretches of the New Jersey shore and random Walmarts to Swedish lakes and even the moon. They are also common finds during major excavations. More than 200 fossil species were found in a mound of sand beneath Mangere Wastewater Treatment Plant in Auckland, New Zealand.

[Related from PopSci+: The ghosts of the dinosaurs we may never discover.]

The fossils include some of the world’s oldest known flax snails, an extinct sawshark spine, great white shark teeth, and at least 10 previously known species. They are described in a study published on August 28 in the New Zealand Journal of Geology and Geophysics. According to the team, this treasure trove represents one of the richest and most diverse groups of three-million-year-old animal fossils ever found in New Zealand. 

They were first uncovered in 2020 by Watercare, Auckland’s water and wastewater service. The company was excavating two large vertical shafts as part of an upgrade to the major pipeline that brings raw sewage from the center of the city to a plant for treatment. While digging, they came upon the ancient shell bed dating back at least three million years. Geologist and study co-author Bruce Hayward from Auckland-based research group Geomarine Research said that the discovery was similar to “finding gold right on your doorstep.”

Watercare and their contractors brought the shelly sand over to a nearby field so that Hayward and a team of paleontologists led by Auckland Museum curator Wilma Blom could carefully sift through it. The team examined more than 300,000 fossils of 266 species, and several thousand specimens have been brought to this museum.

The fossils were likely deposited between 3 and 3.7 million years ago into a subtidal channel that would become present-day Manukau Harbour. “At that time, sea level was slightly higher than it is today as the world was also several degrees warmer than now,” Hayward said in a statement. “As a result, the fossils include a number of subtropical species, whose relatives today live in the warmer waters around the Kermadec and Norfolk islands.”

In the study, the team describes 266 different fossil species and some rare finds, including a baleen whale vertebrae, dental plates of eagle rays, and a broken sperm whale tooth. The roughly 10 previously unknown species described and named in future research. 

[Related: Fossil trove in Wales is a 462-million-year-old world of wee sea creatures.]

One aspect of this fossil bed that surprised the team is that the fossilized remains belong to animals that lived in many different environments that were eventually brought together in the ancient marine channel through strong currents and waves. Ten specimens of an iconic  mollusk called the New Zealand flax snail likely lived on the land next to the ancient subtidal channel and were washed out to sea by storm runoff, according to the team. Other specimens were likely attached to hard rocky shorelines, while others were washed into the channel from areas further offshore.  

The team dedicated the work to New Zealand’s leading molluscan fossil expert Alan Beu, who was working on the fossils before he died earlier this year.

The post Fossils of 10 unknown species found by sewage plant appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The largest search of Loch Ness in more than 50 years will deploy drones and hydrophones https://www.popsci.com/technology/loch-ness-exploration/ Thu, 24 Aug 2023 16:30:00 +0000 https://www.popsci.com/?p=565302
Famous, debunked black and white 'Surgeon's Photo' of Loch Ness Monster
The famous 1934 'Surgeon's Photo' of the 'Loch Ness Monster' was later proven to be a hoax. Keystone/Getty

Enthusiasts will use thermal imaging and underwater listening devices to search for "Nessie."

The post The largest search of Loch Ness in more than 50 years will deploy drones and hydrophones appeared first on Popular Science.

]]>
Famous, debunked black and white 'Surgeon's Photo' of Loch Ness Monster
The famous 1934 'Surgeon's Photo' of the 'Loch Ness Monster' was later proven to be a hoax. Keystone/Getty

The largest cryptological survey of Loch Ness in over 50 years is scheduled to take place this weekend, featuring technology never before used to search for the elusive, still unproven Loch Ness Monster. Affectionately known by many as “Nessie,” no physical evidence of the cryptid—a creature whose existence isn’t proven by science or biology—has ever been found. The expedition is sponsored by the “independent and voluntary research team,” Loch Ness Exploration (LNE), an organization that is currently seeking additional help from the public in conducting a “giant surface watch” of the loch’s waters. Although an “overwhelming” demand has already resulted in sold out in-person spots, those who can’t make it over to Scotland can still tune in to LNE’s official 24/7 live stream to help out organizers.

“Since starting LNE, it’s always been our goal to record, study and analyze all manner of natural behavior and phenomena that may be more challenging to explain,” Alan McKenna, LNE founder, said in a statement earlier this month. “It’s our hope to inspire a new generation of Loch Ness enthusiasts and by joining this large scale surface watch… to personally contribute towards this fascinating mystery that has captivated so many people from around the world.”

[Related: New DNA evidence may prove what the Loch Ness Monster really is.]

Alleged sightings of the supposed lake monster (or monsters) in Loch Ness date back centuries, but the tales particularly rose to global attention after the famous 1934 “Surgeon’s Photo.” Although the iconic silhouette was later proved a hoax, folklore surrounding a large aquatic creature lurking within the loch remains strong. In 2019, samples taken from the nearly 22-square-mile body of water indicated the prevalence of eel DNA, potentially providing an explanation for at least some of visitors’ sightings over the decades. The collected DNA, however, did not indicate an eel’s size, thus adding little support to a “giant eel” theory. Of course, many still hold out hope for the possibility of a somehow still undiscovered pod of plesiosaurs calling Loch Ness home.

On August 26 and 27, however, the LNE team will deploy at least a few new tools in hopes of uncovering evidence of something strange. According to the event’s announcement page, drones will traverse the loch while taking thermal imaging of the waters via infrared cameras, potentially “identifying any mysterious anomalies.” Meanwhile, researchers will repeatedly deploy an underwater hydrophone to listen in on any “Nessie-like calls.”

“The weekend gives an opportunity to search the waters in a way that has never been done before, and we can’t wait to see what we find,” said Loch Ness Centre general manager, Paul Nixon. 

Of course, the odds aren’t exactly in Nessie volunteers’ favor following decades of debunks, hoaxes, and misattributed sightings. Still, it’s probably as nice a time of the year as any to get out onto the loch and enjoy the Scottish summer.

The post The largest search of Loch Ness in more than 50 years will deploy drones and hydrophones appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The final missing piece of the human genome has been decoded https://www.popsci.com/science/human-y-chromosome-full-sequence/ Wed, 23 Aug 2023 19:32:00 +0000 https://www.popsci.com/?p=564923
Purple and blue visualizations of human chromosomes.
It took roughly 100 years to fill in all the missing details of the Y chromosome. Darryl Leja, National Human Genome Research Institute, NIH

Mysteries hidden in the human Y chromosomes are now coming to light.

The post The final missing piece of the human genome has been decoded appeared first on Popular Science.

]]>
Purple and blue visualizations of human chromosomes.
It took roughly 100 years to fill in all the missing details of the Y chromosome. Darryl Leja, National Human Genome Research Institute, NIH

Despite its macho connotations, the Y chromosome is among the tiniest of the 46 chromosomes in the human genome. It makes up only 2 percent of a human cell’s total DNA. But because of its seemingly endless repeating bases, the Y chromosome is one of the most difficult to genetically sequence. Scientists initially believed it was nothing more than a genetic wasteland, only good for making sperm.

Yet, in reality, that’s not the case at all. As genetic technology grows more advanced, so has our understanding of the Y chromosome’s importance. Its loss in older men, for example, is associated with an increased risk of cancer and other chronic diseases. Its genes somehow play a part in multiple biological processes. But, for decades, more than half of the Y chromosome remained unsequenced, and its role in human health remained a mystery.

That age of mystery is ending. For the first time, geneticists have assembled a complete sequence of the Y chromosome. The international Telomere-to-Telomere (T2T) Consortium added data for more than 30 million new base pairs and identified 41 new protein-coding genes. Two studies published today in Nature break down those findings, explaining how this chromosome affects our reproduction, evolution, and even the gut microbiome.

[Related: What we might learn about embryos and evolution from the most complete human genome map yet]

“The complete sequence of the Y chromosome has opened up a lot of doors for the scientific community,” says Chris Lau, a professor of medicine at the University of California, San Francisco who studies the human Y chromosome but was not involved in these current studies. “We anticipate some surprises could be forthcoming, just like the time in the past we thought it was full of junk materials.”

A picture a century in the making

It took more than 100 years for biologists to construct a complete assembly of the Y chromosome’s structure, after its discovery in 1905. The first human genome was completed in April 2003, but it left behind some unknown gaps, including swathes of the Y chromosome. 

The chromosome’s repetition made it a challenge to reconstruct. It has more than a million of base pairs lined up in long repeated sequences, says Karen Miga, the associate director at the University of California, Santa Cruz Genomics Institute and co-lead of the T2T Consortium. These are known as palindromes, because they are the same from front to back. 

The Y chromosome is among the tiniest of these 46 paired structures.
The Y chromosome is among the tiniest of these 46 paired structures. National Human Genome Research Institute

All chromosomes have some repeats in their genes, but the Y chromosome has an unusually high amount. Assembling these was a laborious and expensive process. “Researchers have had a hard time studying this in the past because we just didn’t have the right tools to reconstruct these really complex repeats,” Miga says. 

New advances in long-read sequencing technology and computational assembly methods made it easier to put each repetitive sequence in order. For example, the team could now identify exactly where an inversion occurs—where breaks in the DNA cause a segment to reinsert itself in reverse order—and use that technique to spot other inversions. 

Filling in millions of blanks

The new techniques added more than 30 million base pairs missing from the current Human Genome Project, for a grand total of 62,460,029 base pairs in the Y chromosome. The Y chromosome shows to have a unique organization of DNA sequences that’s strangely not seen in other chromosomes, Miga says. She believes a ton of new biology is required to understand the evolutionary reason behind this organization and how parts of the chromosome correspond to human function. 

[Related: We’re one step closer to identifying the first-ever mammals]

The research team has already made some headway in reshaping science. These newly discovered sequences corrected several mistakes and assumptions found in the human genome reference sequence. They’ve also provided new insight into the ways the Y chromosome shapes human life.

“This is an extremely important finding in the human genome field,” Lau says.

Fertility and proteins

The Y chromosome contains many genes that regulate the production of sperm. Some of these newfound repetitive genomic regions, according to Miga, play a part in that process, too. “Understanding differences that could exist between humans could really inform things like infertility and how that process is inherited across time.”

Sequencing the Y chromosome also revealed 41 new protein-coding genes, 38 of which were extra copies of a gene family called TSPY, thought to be involved in sperm production. It’s possible they are also responsible for the development of male sex characteristics, but more research is needed to determine their precise roles. 

Variation in human evolution

Commercial ancestry sites use Y chromosomes to trace paternal lineages. The new DNA sequences can further help researchers understand how humans evolved over time. In the second study, geneticists examined the Y chromosomes from 43 genetically diverse men. They found significant amounts of genetic variation between individuals. 

In some parts of the chromosome, its component parts—nucleotides—were very similar across the men. But half of gene-rich regions in the Y chromosomes had greater mutation rates carrying large inversions, at a higher rate than most other parts of the genome. These differences in genetic variation could have potentially evolved to hold some important biological function, though what that could be is unknown. 

Correcting bacterial confusion

When analyzing genetic samples, researchers often use databases to screen for sequences belonging to human DNA. If the sequences aren’t found anywhere in the current model of the human genome, scientists are likely to conclude the material belongs to bacteria. The new studies show some Y chromosome sequences, not yet entered in human databases, were mislabeled as bacteria.

Not junk after all

Geneticists will continue to mine discoveries from this treasure trove of data. Further analyses of the Y chromosome are likely to clarify the relevance of this chromosome in human health and disease.
This information “will benefit research in human evolution and migration, forensic science, and many translational applications in diagnostic and prognostic development in human diseases,” Lau says, “particularly the scientific reason for the mosaic loss of the Y chromosome in disease and cancer among others.”

The post The final missing piece of the human genome has been decoded appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Hogfish ‘see’ using their skin https://www.popsci.com/environment/hogfish-skin-vision/ Wed, 23 Aug 2023 14:00:00 +0000 https://www.popsci.com/?p=564665
A hogfish swims near the Florida Keys. It has spikes on top and a pointy snout.
Hogfish are found in the western Atlantic Ocean and carry a gene for a light-sensitive protein called opsin. Deposit Photos

These chameleons of the sea can change color in milliseconds.

The post Hogfish ‘see’ using their skin appeared first on Popular Science.

]]>
A hogfish swims near the Florida Keys. It has spikes on top and a pointy snout.
Hogfish are found in the western Atlantic Ocean and carry a gene for a light-sensitive protein called opsin. Deposit Photos

The pointy-snouted and reef dwelling hogfish that dot the Atlantic Ocean between North Carolina and Brazil are known for their color-changing skin. These chameleons of the sea can quickly switch from white to a reddish brown to blend in with reefs, but their skin may be hiding something else.

[Related: Octopus change color as they shift between sleep phases.]

A study published August 21 in the journal Nature Communications looked deeper into the hogfish’s sensory feedback system and found that the fish could be using their skin to help see underwater. They can also use this to take mental photographs of themselves from the inside.

University of North Carolina Wilmington biologist Lori Schweikert was inspired to study this phenomenon after she witnessed it first hand in the Florida Keys. When she saw that a hogfish could continue this camouflage act even after it had died, she wondered if hogfish could detect light using only their skin, versus relying on their eyes and brain. 

In an earlier study, Schweikert and Duke University biologist Sönke Johnsen found that hogfish carry a gene for a light-sensitive protein called opsin that is activated in their skin. This gene is different from the opsin genes that are found in their eyes. Squid, geckos, and other color-changing animals also make light-sensing opsins in their skin, but scientists are unsure how they help the animals change color. One hypothesis is that light-sensing skin helps animals take in their surroundings, but it also could be a way that the animals view themselves. 

In this new study, Schweikert and Johnsen took pieces of skin from different parts of the hogfish’s body and took images of them under a microscope. Up close, each dot of color on the skin is a specialized cell called a chromatophore. These cells have granules of pigment inside them that can be black, yellow, or red.

The movement of these pigment granules changes the skin color. When they are spread out across the cell, darker colors appear. The cell becomes more transparent when they cluster together into a tiny spot. 

Fish photo
Seen through a microscope, a hogfish’s skin looks like a pointillist painting. Each dot of color is a specialized cell containing pigment granules that can be red, yellow or black. The pigment granules can spread out or cluster tightly together within the cell, making the color appear darker or more transparent. CREDIT: Lori Schweikert, University of North Carolina Wilmington

Next, the team used a technique called immunolabeling to find the light sensing opsin proteins within the skin. They saw that in hogfish, the opsins aren’t produced in the color-changing chromatophore cells. The opsins actually reside in other cells that are located directly beneath them.

Images taken with a transmission electron microscope showed a previously unknown cell type below the chromatophores that are full of opsin protein.

[Related: Some sea snakes may not be colorblind after all.]

According to Schweikert, the light striking the skin must pass through the pigment-filled chromatophores first before it gets to the light-sensitive layer. She and the team estimate that the opsin molecules in the hogfish are most sensitive to blue light. This is the wavelength of light that the pigment granules in the hogfish absorb best. 

The fish’s light-sensitive opsins are somewhat like an internal roll of Polaroid film, that captures changes in the light and then can filter through the pigment-filled cells when the pigment granules fan out or scrunch up. 

“The animals can literally take a photo of their own skin from the inside,” Johnsen said in a statement. “In a way they can tell the animal what its skin looks like, since it can’t really bend over to look.”

Eyes do more than merely detect light and work to form images, so it’s not enough to say that hogfish skin is like a giant eye. 

“Just to be clear, we’re not arguing that hogfish skin functions like an eye,” Schweikert added in a statement. “We don’t have any evidence to suggest that’s what’s happening in their skin. They appear to be watching their own color change.”

The findings may help researchers develop better sensory feedback techniques for devices that need to fine-tune performance without eyesight or camera feeds, such as robotic limbs and self-driving cars.

The post Hogfish ‘see’ using their skin appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mighty sabertooth tigers may have purred like kittens https://www.popsci.com/science/sabertooth-tiger-purr-roar/ Tue, 22 Aug 2023 17:00:00 +0000 https://www.popsci.com/?p=564322
An illustration of a sabertooth tiger in a grassland. Sabertooth tigers went extinct between about 8,000 and 10,000 years ago.
An illustration of a sabertooth tiger. The predators went extinct between about 8,000 and 10,000 years ago. Adam Hartstone-Rose

Evidence in the feline's bones suggest that this extinct predator may have made some nuanced vocalizations.

The post Mighty sabertooth tigers may have purred like kittens appeared first on Popular Science.

]]>
An illustration of a sabertooth tiger in a grassland. Sabertooth tigers went extinct between about 8,000 and 10,000 years ago.
An illustration of a sabertooth tiger. The predators went extinct between about 8,000 and 10,000 years ago. Adam Hartstone-Rose

If the mighty Ice Age sabertooth tiger called out in a forest, and no one was around to hear it, did it even make a sound? A team of researchers from North Carolina State University set out to answer that philosophical question by investigating if sabertooth cats had a throaty purr or a mighty roar. They found that tiny bones in the tiger’s throat might present a more  nuanced answer. Their findings were published August 21 in the Journal of Morphology

[Related: Life in Los Angeles was brutal for saber-toothed cats.]

Present-day cats belong to two subfamilies who make different vocalizations. The pantherine or “big cats” include lions, jaguars, and tigers who typically roar. Felinae or “little cats” includes domestic cats, ocelots, lynxes, and cougars who purr. For cats that roar, the structures that surround their larynx (or voice box) generally aren’t stiff enough to make the purring sound.

“Evolutionarily speaking, sabertooths split off the cat family tree before these other modern groups did,” study co-author and NC state biologist Adam Hartstone-Rose said in a statement. “This means that lions are more closely related to housecats than either are to sabertooths.

Vocalization is driven by the larynx and soft tissue in the throat, not bones. However anatomists noticed that the bones responsible for anchoring those tissues in place called the hyoid bones differed in both number and size between purring and roaring cats. 

“While humans have only one hyoid bone, purring cats have nine bones linked together in a chain and roaring cats have seven,” co-author and NC State Ph.D. student Ashley Deutsch said in a statement. “The missing bones are located toward the top of the hyoid structure near where it connects to the skull.”

According to the team, sabertooth tigers only have seven bones in their hyoid structure, but the shape and size look eerily similar to some purring cats’ bones. If vocalization is related to the number of bones in the hyoid structure, then the sabertooths roared. However, if it is about shape, they may have purred. 

“You can argue that since the sabertooths only have seven bones they roared, but that’s not the whole story,” said Hartstone-Rose. “The anatomy is weird. They’re missing extra bones that purring cats have, but the shape and size of the hyoid bones are distinct. Some of them are shaped more like those of purring cats, but much bigger. 

[Related: Orangutans can make two sounds at the same time.]

According to the team, if the missing bones (the epihyoid bones) were the key to different vocalizations, then the bones that are most closely connected to them should appear different between purrers and roarers. Those bones actually looked very similar in shape in the purring variety of cats.

The team saw more shape variation in the bones that are closer to the vocal apparatus, like the the thyrohyoid and basihyoid bones. Having these key hyoid bones shaped like those belonging to purring cats may indicate that they purred like a kitten instead of roaring like a lion, but it is still a bit of a prehistoric mystery. 

“It is perhaps most likely that the size of the hyoids plays a role in the pitch of vocalization,” said Deutsch. “Although Smilodon wasn’t quite as big as the largest modern cats, its hyoid bones are substantially larger than those of any of their living relatives, so potentially they had even deeper vocalizations than the largest tigers and lions.”

The post Mighty sabertooth tigers may have purred like kittens appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Some Pacific coral reefs can keep pace with a warming ocean https://www.popsci.com/environment/pacific-reefs-climate-change-ocean/ Tue, 22 Aug 2023 12:00:00 +0000 https://www.popsci.com/?p=564264
A coral reef just off of an island in Palau. Coral reefs in Palau provide critical habitats for a number of species and provide a storm barrier.
Coral reefs in Palau provide critical habitats for a number of species and provide a storm barrier. Deposit Photos

Almost 40 years of data shows that some species are more heat tolerant, but still face uphill battle against rising temperatures.

The post Some Pacific coral reefs can keep pace with a warming ocean appeared first on Popular Science.

]]>
A coral reef just off of an island in Palau. Coral reefs in Palau provide critical habitats for a number of species and provide a storm barrier.
Coral reefs in Palau provide critical habitats for a number of species and provide a storm barrier. Deposit Photos

Ocean temperatures are surging worldwide largely due to human-made climate change and natural El Niño driven patterns. The rise is wreaking havoc on the planet’s coral reefs, however a study published August 22 in the journal Nature Communications found that the coral reefs in one part of the Pacific Ocean can likely adjust to some rises in temperature. This adaptation has the potential to reduce future coral bleaching as the climate continues to change. 

[Related: The heroic effort to save Florida’s coral reef from a historic heatwave.]

“We know that coral reefs can increase their overall thermal tolerance over time by acclimatization, genetic adaptation or shifts in community structure, however we know very little about the rates at which this is occurring,” study co-author and Newcastle University coral reef ecologist James Guest said in a statement

The rate at which coral reefs can naturally increase thermal tolerance, and if it can match pace with warming, is largely unknown. So the team started their work by investigating historic mass bleaching events that have occurred since the late 1980s in a remote Pacific coral reef system. 

They focused on a reef system Palau, an island country in the western Pacific Ocean, and found that increases in the heat tolerance of reefs is possible. Reefs here are known as a bevy of biodiversity and provide a barrier from storms. The team used decades of data to create models of multiple future coral bleaching trajectories for Palauan reefs. Each model had a different simulated rate of thermal tolerance enhancement. The team found that if coral heat tolerance continues to rise throughout this century at the most-likely high rate, significant reductions in bleaching impacts are actually possible.

The results affirm the general scientific consensus that the severity of future coral bleaching will depend on reducing carbon emissions. For example, if the commitments of the 2015 Paris Agreement to limit future warming to 2.7 degrees Fahrenheit, high-frequency bleaching can be fully mitigated at some reefs under low-to-middle emissions scenarios. These bleaching impacts are unavoidable under high emissions scenarios where society continues to rely on fossil fuels.  

Coral communities will need to persist under constant climate change and will likely need to endure progressively more intense and frequent marine heatwaves. The team believes that the observed increase in tolerance suggests that some natural mechanisms, such as genetic adaptation or acclimatization of corals or their symbiotic microalgae, may contribute to the increased heat tolerance. 

[Related: To save coral reefs, color the larvae.]

While this is some positive news for Pacific coral, the resilience comes at a high cost. Adaptations like these can reduce reef diversity and growth, and without cutting future greenhouse gas, the Pacific’s reefs won’t be able to provide the habitat resources and protection from waves that residents depend on.

“Our study indicates the presence of an ecological resilience to climate change, yet also highlights the need to fulfill Paris Agreement commitments to effectively preserve coral reefs,” study co-author and Newcastle University coral reef ecologist Liam Lachs said in a statement. “We quantified a natural increase in coral thermal tolerance over decadal time scales which can be directly compared to the rate of ocean warming. While our work offers a glimmer of hope, it also emphasizes the need for continued action on reducing carbon emissions to mitigate climate change and secure a future for these vital ecosystems.”

The post Some Pacific coral reefs can keep pace with a warming ocean appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This flightless pterosaur ancestor had enviable claws and a raptor-like beak https://www.popsci.com/science/flightless-pterosaur-ancestor-claw-beak/ Fri, 18 Aug 2023 12:00:00 +0000 https://www.popsci.com/?p=563748
Artist's interpretation of Venetoraptor gassenae in a Triassic landscape.
Artist's interpretation of Venetoraptor gassenae in a Triassic landscape. Caio Fantini

A newly discovered lagerpetid is shedding light on the mysterious evolution of the pterosaurs that once dominated Earth's skies.

The post This flightless pterosaur ancestor had enviable claws and a raptor-like beak appeared first on Popular Science.

]]>
Artist's interpretation of Venetoraptor gassenae in a Triassic landscape.
Artist's interpretation of Venetoraptor gassenae in a Triassic landscape. Caio Fantini

As if the thought of a flying pterosaur with a 6.5 foot wingspan dominating Earth’s skies wasn’t terrifying enough, paleontologists have now found an even older pterosaur ancestor with some prominent claws. The latest find might not have its signature wings just yet, but boasts a beak and sharp claws. The roughly 230-million-year-old lagerpetid unearthed in Brazil is described in a study published on August 16 in the journal Nature

[Related: This pterosaur ancestor was a tiny, flightless dog-like dinosaur.]

Pterosaurs and dinosaurs both evolved about 235 million years ago in the Middle to early Late Triassic (about 235 million years ago). Dinosaurs went on to dominate the land during the Jurassic Period (201.3 to 145 million years ago) and the winged pterosaurs took over the skies during the Cretaceous Period (145.5 to 66 million years ago). 

While some new discoveries including finding Scleromochlus taylori in 2022 have filled in evolutionary gaps and helped paleontologists learn more about these winged critters, the fossil record from this time still remains relatively scarce. Lagerpetids like this newly discovered clawed specimen are the closest known non-flying group to pterosaurs.

In this new study, a team describes the well-preserved partial skeleton of a lagerpetid that they named Venetoraptor gassenae. The team estimates that V. gassenae would have been about 27.5 inches tall and about 39 inches long. The bone features indicate that this particular animal was an adult when it died. It also had feather-like fur on its body and a long tail.

“Because cranial remains are so scarce for lagerpetids, this is the first reliable look into the face of these enigmatic reptiles,” study co-author and paleontologist Brazil’s Universidade Federal de Santa Maria Rodrigo Müller told Gizmodo. “The unusual skeleton of Venetoraptor gassenae reveals a completely new morphotype of pterosaur precursors.”

Artist's interpretation of Venetoraptor gassenae in a Triassic landscape depicting details of its anatomy, including its claws, beak, and feet. Credit: Caio Fantini
Artist’s interpretation of Venetoraptor gassenae in a Triassic landscape depicting details of its anatomy. CREDIT: Caio Fantini.

V. gassenae’s more notable features include a raptorial-like beak and large hands with claws that resemble a curved sword. The team believes that the Veneraprot was highly specialized to its ecological niche. Its claws may have helped it climb or handle its prey, and V. gassenae also has an elongated fourth digit on its fossilized right hand. According to Müller, this has not been seen in other lagerpetids, which hints that V. gassenae is especially closely related to pterosaurs.

[Related: Dinosaur Cove reveals a petite pterosaur species.]

“This elongated fourth digit supports the wings in pterosaurs, so V. gassenae may represent the transition of lagerpetids towards pterosaurs,” Müller told LiveScience.

It’s unclear what role that its long beak played. Beaks obviously can help animals eat, but they can also have many functions beyond feeding, including sexual displays, vocalization, and regulating body temperature. 

By studying this fossil alongside the remains from 18 dinosaur and 10 pterosaur species from this time period, the team believes that lagerpetids were as morphologically diverse as Triassic pterosaurs and even more morphologically diverse than Triassic dinosaurs. It shows that this level of biodiversity was already starting to flourish in the precursors of both dinosaurs and pterosaurs and was not something that only emerged after both groups originated. 

The post This flightless pterosaur ancestor had enviable claws and a raptor-like beak appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mission to recreate Darwin’s scientific Beagle voyage sets sail https://www.popsci.com/environment/charles-darwins-conservation-journey-sail/ Thu, 17 Aug 2023 17:30:00 +0000 https://www.popsci.com/?p=563483
Members of the Dutch Tall Ship Oosterschelde wave goodbye from the quay in Rotterdam on August 4, 2023. The Rotterdam ship departs for a two-year world tour that scientist Charles Darwin made two centuries ago.
Members of the Dutch Tall Ship Oosterschelde wave goodbye from the quay in Rotterdam on August 4, 2023. The Rotterdam ship departs for a two-year world tour that scientist Charles Darwin made two centuries ago. Jeffrey Groeneweg/AFP via Getty Images

The Darwin200 expedition is expected to cover 400,000 nautical miles in the hopes of empowering a new generation of conservationists.

The post Mission to recreate Darwin’s scientific Beagle voyage sets sail appeared first on Popular Science.

]]>
Members of the Dutch Tall Ship Oosterschelde wave goodbye from the quay in Rotterdam on August 4, 2023. The Rotterdam ship departs for a two-year world tour that scientist Charles Darwin made two centuries ago.
Members of the Dutch Tall Ship Oosterschelde wave goodbye from the quay in Rotterdam on August 4, 2023. The Rotterdam ship departs for a two-year world tour that scientist Charles Darwin made two centuries ago. Jeffrey Groeneweg/AFP via Getty Images

On August 15, a schooner set sail from Plymouth on the southern coast of England to recreate the South America-bound voyage taken by biologist Charles Darwin almost 200 years ago. The Dutch tall ship Oosterschelde began its two year mission as a floating laboratory, where about 200 conservationists and naturalists will gather along the way to take part in a project called Darwin200.

[Related: Let’s talk about Charles Darwin’s sexy theory of selection.]

In 1831, the HMS Beagle set sail from Plymouth with a then 22-year-old Charles Darwin aboard. The five-year journey was primarily intended to explore the coastline of South America and chart its harbors, with Darwin tasked to make scientific observations. He explored Brazil, Argentina, Chile, and the remote areas of the Galápagos Islands. Over the course of the journey that Darwin said was “by far the most important event in my life,” he brought back specimens of more than 1,500 different species and this work influenced his book On the Origin of Species and the theory of evolution.

The Oosterschelde is expected to make the 40,000 nautical mile expedition and hopes to anchor in 32 ports, including all the major ports visited by the Beagle. It expected to make its first landing in the Canary Islands and then cross the Atlantic Ocean to Brazil. It will then follow along South America’s eastern coast, up the west coast, and out to the Galápagos. It will then sail to Australia and New Zealand, before stopping in South Africa, and returning to England.

“I always think it is very much worth reminding ourselves on a daily basis that humans and the rest of the living world share a common origin,” Sarah Darwin, a botanist and the great-great-granddaughter of Charles Darwin told the Associated Press. “Darwin was saying that 160 years ago, that we were related with all other nature. We’re not above it, we are part of nature.” 

The Darwin200 project has been in the works for at least a decade and aims to empower a new generation of exceptional environmental leaders through training some of the world’s top young conservationists ranging from 18 to 25 years-old. 200 young people were selected based on their accomplishments aimed at making the world a better place and will join the voyage at different stages. 

“This is about hope, it’s about [the] future and it’s about changing the world,” leader Stewart McPherson told the AP

[Related: Letters From Charles Darwin.]

Today’s naturalists are studying a world a bit different than Darwin. The planet’s birds, reptiles, mammals, fish, and amphibians have already shown population declines of around 68 percent since the 1970s and 10 percent of terrestrial biodiversity is set to decrease by 2050 if new policies are not immediately put in place. In December 2022, 200 countries’ delegates  at the United Nations Biodiversity Conference (COP 15) reached the 30 by 30 deal, vowing to protect 30 percent of the Earth’s wild land and oceans by 2030, thus representing the most significant effort ever to protect the world’s dwindling biodiversity. The deal also provides funding in an effort to save and preserve biodiversity in lower-income countries. Currently, only 17 percent of terrestrial and 10 percent of marine areas are protected through legislation.

Still, more work is needed as some scientists believe current estimates of biodiversity loss are even higher than scientists first expected. One of the goals of Darwin200 is to develop projects to save the species it is studying along the way before it’s too late.

“We all know we’re in the midst of the sixth great extinction with a lot of doom and gloom about the problems facing the environment, climate change and loss of biodiversity,” Famed primatologist and Darwin200 supporter Jane Goodall told Reuters. “This voyage will give many people an opportunity to see there is still time to make change.”

The post Mission to recreate Darwin’s scientific Beagle voyage sets sail appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Hungry seals may have begun following their whiskers 23 million years ago https://www.popsci.com/environment/seal-whisker-evolution/ Thu, 17 Aug 2023 15:00:00 +0000 https://www.popsci.com/?p=563535
Artist impression of the stem pinniped Potamotherium valletoni swimming in his natural, freshwater environment. Grasses and plants grow below the animal, that has whiskers, legs, and flippers.
An artist's illustration of the stem pinniped Potamotherium valletoni in his natural, freshwater environment. Gabriel Ugueto

Ancient seals evolved their now signature whiskers to forage for food, but figuring out when has been tricky.

The post Hungry seals may have begun following their whiskers 23 million years ago appeared first on Popular Science.

]]>
Artist impression of the stem pinniped Potamotherium valletoni swimming in his natural, freshwater environment. Grasses and plants grow below the animal, that has whiskers, legs, and flippers.
An artist's illustration of the stem pinniped Potamotherium valletoni in his natural, freshwater environment. Gabriel Ugueto

Over 23 million years ago, an ancient relative of modern seals called Potamotherium valletoni was possibly one of the first pinnipeds to use their whiskers to forage for food and explore their watery world. The findings were published August 17 in the journal Communications Biology and provide more insight into how ancient seals transition from a life lived on land into one mostly underwater. 

[Related: Baby seals are born with a great sense of rhythm.]

The relatives of present day pinnipeds primarily lived on land and in freshwater environments, unlike our recognizable harbor seals which spend most of their time under the waves in saltwater. These early seals had legs for walking instead of flippers, a long tail, and were much longer, and looked a bit like present-day otters

“Pinnipeds (seals, sea lions and walruses) diversified tremendously since their ancestors entered the seas,” study co-author Alexandra van der Geer, a vertebrate paleontologist at the Naturalis Biodiversity Center in the Netherlands tells PopSci. “All living pinnipeds are very distantly related to Potamotherium, so one could say that in a way all living pinnipeds are equally closely related to Potamotherium. That is why Potamotherium is called a stem (or basal) pinniped.”

Some early species used their forelimbs to explore their surroundings, and prior to this study, scientists were unsure when seals and their relatives began using their whiskers to forage. Whiskers are thick wiry hairs with tons of nerve endings at their base and they’re very sensitive to movement. They can be used to help detect vibrations in the water, making it easier to find fish. 

Van der Geer and colleagues from institutions in Italy, Greece, and Sweden were inspired to look into this area of neurobiology by a visit to Chicago’s Field Museum. There, they studied the museum’s collection of special skull models called endocasts.  “An endocast is the infilling of the inside of the skull, so it fills up the space of the (former) brain. The brain is soft tissue and does not fossilize, but decomposes and disappears after death,” explains van der Geer.

In the study, they used these endocasts to investigate the evolution of whisker-foraging behaviors. They compared the brain structures of Potamotherium with six extinct and 31 living carnivorous mammals, including bears, mustelids, and seal relatives. The team compared the size and structure of a brain region called the coronal gyrus. Some earlier studies suggest that this region is involved in processing signals from seal whiskers. 

[Related: Seals snooze during 20-minute ‘sleeping dives’ to avoid predators.]

They found that Potamotherium had a larger coronal gyrus than both ancient and living land-based mammals that use their forelimbs to forage, such as the Asian small-clawed otter. However, it had a similar sized coronal gyrus to other ancient seal relatives and semiaquatic mammals that use whiskers to explore, including the Eurasian otter. This shows that Potamotherium may have used a combination of forelimbs and whiskers to forage.  

The team was surprised by the convergent evolution they saw in their study. “Not just seals but also some otters, civets and other carnivore mammals that are unrelated to seals, yet use their whiskers for foraging their prey underwater in the same way as seals, developed the same part of the brain,” van der Geer says. 

Fossil brains provide evidence of underwater feeding in early seals. CREDIT: Miranta Kouvari.

Additionally, they were surprised to see that coronal gyrus looks the same species with the same behavior, independent of their family ties. The team believes that whisker-based foraging may have already been present in seal relatives before they transitioned to their fully aquatic lifestyles of today. Using whiskers may have helped the Miocene-era creatures adapt to finding food underwater.

The study also shows the value of studying brain endocasts to look into the past. “By looking at the details of the brain endocast one can infer behavior and function in fossil species,” says van der Geer.

The post Hungry seals may have begun following their whiskers 23 million years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why your dog needs to smell the world https://www.popsci.com/environment/dogs-sense-of-smell/ Thu, 17 Aug 2023 13:00:00 +0000 https://www.popsci.com/?p=562991
White dog inhaling colorful waves that represent smells. Illustrated.
Smells are like manna for a dog's brain. Isabel Seliger for Popular Science

Let that powerful nose run free.

The post Why your dog needs to smell the world appeared first on Popular Science.

]]>
White dog inhaling colorful waves that represent smells. Illustrated.
Smells are like manna for a dog's brain. Isabel Seliger for Popular Science

How well do you know your pets? Pet Psychic takes some of the musings you’ve had about your BFFs (beast friends forever) and connects them to hard research and results from modern science.

CONSIDER THE MARVEL that is a dog’s nose: that damp, enthusiastic button of adorableness, nostrils attuned to dimensions we barely comprehend.

Now, you might already know that the canine sense of smell is vastly superior to humans’. But sit with that for a while: Try to imagine an existence in which scent is no less important than sight, and your very sense of time and self is entangled with olfaction.

It’s a horizon-expanding exercise—and one that could help us make our sniffy companions’ lives better. “Realizing the importance of olfaction is an easy way to give them a little more freedom to be themselves,” says Alexandra Horowitz, a dog cognition specialist at Barnard College and the author of Being a Dog: Following the Dog into a World of Smell.

The exquisite ability kicks in as air passes through the membranes that cover delicate, scroll-shaped bone structures in their noses called nasal turbinates. Humans also have nasal turbinates—but if our membranes were stretched flat, they’d be roughly the size of a postage stamp. Those of a German shepherd would be the size of a standard postcard.

Such membranes are critical because they hold receptors that sample an odor’s compounds. A human nose contains roughly 6 million receptors; a dog’s nose contains up to several hundred million. A dog’s nose also has anywhere from a few hundred million to a couple billion nerves connecting the receptors to the brain, compared to just 6 million nerves in a human‘s.

The brain’s olfactory cortex, where those sensory signals are processed, is roughly 40 times larger in a dog than in a human. On top of that, last year scientists learned that olfactory pathways extend farther in dogs’ brains than in humans’, and also connect directly to the occipital cortex, where visual information is processed. The connection, which has not been documented in any other species, suggests just how central sniffing is to canine cognition, “rather than a more complementary role as is often described in human functioning,” the researchers wrote in the paper.

“When a dog smells, many more parts of the brain are activated than occurs when humans smell,” says Philippa Johnson, a neuroscientist at Cornell University, who was part of the team that made the discovery.

Such neurobiological sophistication explains extraordinary feats of canine scent detection, like the ability to sniff out disease—dogs have been trained to detect cancer and COVID-19—or fingerprints on a glass slide left outside for a week in the rain and sun. The sense also powers crucial functions like social communication and uncanny spatial awareness. Impressive as those abilities are, though, they don’t necessarily tell us what it’s like to be a dog.

For that, one can turn to an experiment conducted by Horowitz and inspired by the mirror self-recognition test, commonly used to gauge self-awareness across animal species. When a creature uses a mirror to inspect a mark surreptitiously placed on their body, such as a daub of paint on the back of their head, they are considered self-aware. They have a mental image of themselves and have used the mirror to learn about a violation of that image.

Only a handful of mammals beyond humans have passed this test, among them chimpanzees and bottlenose dolphins, but not dogs. Still, because of previous findings, Horowitz suspected that a visual self-image might not be so important to them. Instead, she presented domestic canines with samples of urine: other dogs’, their own, their own altered by another scent, and finally, the foreign odor by itself. The dogs lingered on the altered forms of their urine, as if surprised by the change—not unlike someone seeing an unexpected mark on their reflection in a mirror. But their self-image was not an image at all. It was a smell.

“That sort of scent signature is one aspect of how they think about themselves,” says Horowitz. And as their self-awareness is intertwined with scent, so too might be their sense of time, a possibility suggested nearly two decades ago by psychologists Peter Hepper and Deborah Wells at Ireland’s Queens University Belfast. They wanted to learn whether dogs could detect the direction of an odor trail deposited by passing footsteps.

The dogs did so with aplomb. But how? It had nothing to do with the physical orientation of the footsteps; those had been made on squares of carpet, and when their order was changed, the subjects were befuddled. Instead, the answer seemed to reside in the nature of scent and the way it starts decaying the moment it’s left behind. The dogs were sensitive to these changes, surmised Hepper and Wells, and required just five footsteps to perceive a gradient between recent and less-recent steps—and thus the walker’s direction.

All this speaks to how dogs inhabit a sensory world unlike our own. Even the most ordinary surroundings—a room, a sidewalk, a glade in the park—probably seem very different to them. While these places might seem static to us, Horowitz says, to a dog, they’re a rippling, three-dimensional tapestry of light, shapes, and scents, with every object effusing odors that are further revealed upon nose-first investigation.

“I suspect that to some degree, when they smell something, they form a vision in their brain similar to when we humans see something,” says Johnson. “Smell forms part of their everyday existence and is important in almost everything they do.”

To Horowitz, the added perspective suggests the importance of allowing dogs to engage their noses in everyday life. She points to a 2019 study she co-authored in which dogs who played games in which they sniffed out hidden objects subsequently proved to be in a better mood than those who hadn’t. Although it’s possible that the active pups simply enjoyed the interaction rather than the sniffing, it makes sense that using their noses enriched their lives.

Many dogs, however, live in less enriching circumstances. They spend most of their time in relatively scent-impoverished indoor environments and then, when taken outside for a walk, are hurried along at a pace that’s more about their caregiver’s interests than their own. Even just a cracked-open window can make a difference, says Horowitz, though she tries to let her own companions, Quiddity and Tilde, sniff to their hearts’ content while exploring on a stroll.

“I very much encourage that on at least one of the walks you take with your dog, you let them indulge the things they want to smell, just as you would in wandering through a museum and not forcing someone to keep their eyes straight ahead,” she shares. “This is their moment, when you’re outside and there’s all sorts of stuff for them to see and smell. Give them a chance to do that.”

Read more PopSci+ stories.

The post Why your dog needs to smell the world appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Harrison Ford’s latest namesake is an Andean snake species https://www.popsci.com/environment/harrison-ford-snake-species/ Wed, 16 Aug 2023 19:00:00 +0000 https://www.popsci.com/?p=563304
A new snake species named Tachymenoides harrisonfordi was discovered during an expedition in Peru in May 2022. The copper scaled snake is seen here coiled on some brown grass.
A new snake species named Tachymenoides harrisonfordi was discovered during an expedition in Peru in May 2022. Edgar Lehr

'Snakes. Why did it have to be snakes?'

The post Harrison Ford’s latest namesake is an Andean snake species appeared first on Popular Science.

]]>
A new snake species named Tachymenoides harrisonfordi was discovered during an expedition in Peru in May 2022. The copper scaled snake is seen here coiled on some brown grass.
A new snake species named Tachymenoides harrisonfordi was discovered during an expedition in Peru in May 2022. Edgar Lehr

Of all the animals that could be named after Harrison Ford, known for playing one of the world’s most famous fictional archaeologists, it had to be a snake. A newly discovered species of snake from Peru’s Andes Mountains has been named Tachymenoides harrisonfordi for the actor in honor of his conservation work. This honor would surely make famed ophidiophobiac Indiana Jones smile uncomfortably.

[Related: Snakes can actually hear really well.]

According to Conservation International, T. harrisonfordi is a slender snake of only about 16 inches when fully grown, with copper colored scales and amber eyes. The well-camouflaged predator is harmless to humans, though it does have an appetite for lizards and frogs.

While the reptile is not necessarily a formidable foe to humans, finding it proved to be quite a feat. A team of scientists from Peru and the United States took an expedition into Otishi National Park, which is one Earth’s least explored grasslands and is primarily accessible by helicopters (no word if Jock Lindsey was piloting the chopper), to look for new organisms. 

The discovery did not come easy, as the team trekked through a dangerous area watched by drug cartels, crossed alpine swamp, sifted through the tall grass. They eventually found a male snake sunning himself on a mountaintop pass that they named for the iconic actor.

“The snake was a big surprise as we did not expect to find a snake in a high elevational swamp,” expedition leader and Illinois Wesleyan University biologist Edgar Lehr said in a statement.  “Every new species is exciting, and it’s important to name it because only the organisms that are known can be protected. We hope that the publication of the new snake species will create awareness of the importance of biodiversity research and the importance of protecting nature.

Lehr added that it is pretty rare for new species of snakes to be discovered, with the closest related snake named in 1896.

Ford is the vice chairman of Conservation International who has been an advocate for all sorts of animals. Ford has other species of animals named after him–an ant (Pheidole harrisonfordi) and a spider (Calponia harrisonfordi). However, the star told Conservation International that found quick kinship with his new slithery namesake. 

“The snake’s got eyes you can drown in, and he spends most of the day sunning himself by a pool of dirty water—we probably would’ve been friends in the early ‘60s,” Ford said in a statement

While it may seem like trivial fun to name a new organism, describing new species like this snake is crucial for scientists to identify which organisms need protection and where. Unfortunately, some species are disappearing from the Earth before they can even be found.

[Related: Stressed rattlesnakes just need a little help from their friends.]

Scientists have described around 1.2 million known species on Earth, which is a fraction of the 8.7 million species that are estimated to exist. At the current rate of extinction, it may be impossible to fully understand and name all of the diverse flora and fauna maintaining Earth’s ecosystems. 

“Only organisms that are known can be protected,” Lehr told Conservation International, adding that hopes this discovery will draw more attention to the extinction crisis facing animals all over the world. 

It’s also crucial for reptiles like T. harrisonfordi, which can be particularly vulnerable. A 2022 report from Conservation International researchers found that one fifth of all reptiles are currently threatened with extinction. 

“In all seriousness, this discovery is humbling. It’s a reminder that there’s still so much to learn about our wild world—and that humans are one small part of an impossibly vast biosphere,” said Ford. “On this planet, all fates are intertwined, and right now, one million species are teetering on the edge of oblivion. We have an existential mandate to mend our broken relationship with nature and protect the places that sustain life.”

The post Harrison Ford’s latest namesake is an Andean snake species appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Japan’s Hirota people intentionally reshaped their skulls more than 1,000 years ago https://www.popsci.com/science/cranial-modification-ancient-japan/ Wed, 16 Aug 2023 18:00:00 +0000 https://www.popsci.com/?p=563331
Three human skulls sitting on a shelf. Cranial modification has been used for millennia to reshape the human skull.
Cranial modification has been used for millennia to reshape the human skull. Deposit Photos

Evidence of cranial modification has been found in societies from Mexico to France and may even date back to the Neanderthals.

The post Japan’s Hirota people intentionally reshaped their skulls more than 1,000 years ago appeared first on Popular Science.

]]>
Three human skulls sitting on a shelf. Cranial modification has been used for millennia to reshape the human skull.
Cranial modification has been used for millennia to reshape the human skull. Deposit Photos

Modifying our bodies, from external expressions like piercings and tattoos to more internal changes like drilling holes into skulls or foot binding, is quintessentially human. Now, a team of biological anthropologists and archaeologists from Kyushu University in Japan and the University of Montana are learning more about how Japan’s Hirota people partook in a millennia old practice of intentional cranial modification. Their findings,published August 16 in the journal PLOS ONE, also found that there were no significant differences in cranial modification between males and females, indicating that both sexes partook in the process.

[Related: Mysterious skull points to a possible new branch on human family tree.]

Humans are born with fairly soft and pliable skulls to help push our large braincases through the birth canal. During cranial modification, a person’s head is pressed or bound to permanently deform the skull. This is primarily done at an early age, and the practice even predates written history. 

There is evidence that Neanderthals living 45,000 years ago were shaping their infants’ skulls, possibly because it was believed to be better for survival. In Mexico, the Maya may have intended it as a way to protect the souls of its young people. A form of artificial cranial deformation in which a baby’s head was tightly bound and padded to protect the skull from impact was still common among peasantry in Western France as recently as the early 1900s. Scientists theorize the practice was generally performed to signify group affiliation or demonstrate social status.

Now, scientists are gaining a better understanding on how the process occurred in in Japan’s Hirota people, who lived on the island of Tanegashima in southern Japan during the end of the Yayoi Period (roughly the 3rd century CE) to the Kofun Period (between the 5th and 7th century CE). 

“This site was excavated from 1957 to 1959 and again from 2005 to 2006. From the initial excavation, we found remains with cranial deformations characterized by a short head and a flattened back of the skull, specifically the occipital bone and posterior parts of the parietal bones,” study co-author and  Kyushu University biological anthropologist Noriko Seguchi said in a statement

While this particular dig gave the team an ideal spot to study cranial modification, it was not clear if these changes to the skull had been truly intentional or not. In the study, the team used a hybrid of 2D images to analyze the shape of the skulls’ outlines and 3D scans of their surface. They also compared data from skulls from other archeological sites in Japan, including the Doigahama Yayoi people in Western Yamaguchi and the Kyushu Island Jomon people, who were the hunter-gatherer predecessors to the Yayoi people. 

[Related: Skull research sheds light on human-Neanderthal interbreeding.]

“Our results revealed distinct cranial morphology and significant statistical variability between the Hirota individuals with the Kyushu Island Jomon and Doigahama Yayoi samples,” said Seguchi. “The presence of a flattened back of the skull characterized by changes in the occipital bone, along with depressions in parts of the skull that connects the bones together, specifically the sagittal and lambdoidal sutures, strongly suggested intentional cranial modification.”

While the team is still not sure what motivated the Hirota people to do this, they hypothesize that it was to preserve group identity and possibly facilitate a long-distance trade of shellfish, as supported by archaeological evidence found at the site.

“Our findings significantly contribute to our understanding of the practice of intentional cranial modification in ancient societies,” said Seguchi. “We hope that further investigations in the region will offer additional insights into the social and cultural significance of this practice in East Asia and the world.”

The post Japan’s Hirota people intentionally reshaped their skulls more than 1,000 years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Popular shellfish resist extinction in surprising ways https://www.popsci.com/environment/bilvalve-extinction-resilience/ Tue, 15 Aug 2023 15:00:00 +0000 https://www.popsci.com/?p=563081
Four bivalve species found along the Maine coast, including the Northern Quahog, Eastern Oyster, a steamer clam, and a blue mussel presented together in a bed of seaweed at low tide.
Four bivalve species found along the Maine coast, including the Northern Quahog, Eastern Oyster, a steamer clam, and a blue mussel presented together in a bed of seaweed at low tide. Danielle Hall, Smithsonian

A new study points to 801 species that have specific traits that make them more resilient bivalves.

The post Popular shellfish resist extinction in surprising ways appeared first on Popular Science.

]]>
Four bivalve species found along the Maine coast, including the Northern Quahog, Eastern Oyster, a steamer clam, and a blue mussel presented together in a bed of seaweed at low tide.
Four bivalve species found along the Maine coast, including the Northern Quahog, Eastern Oyster, a steamer clam, and a blue mussel presented together in a bed of seaweed at low tide. Danielle Hall, Smithsonian

It’s not a bad time to be a bivalve. Oyster reefs are hailed as natural storm barrier protectors, and we’re learning more and more about the genomes of these odd little creatures. A study published August 15 in the journal Nature Communications found that hundreds of shellfish species that humans harvest tend to be more resistant to extinction. 

[Related: Wild oysters are tastiest in months that end with ‘R’—here’s why.]

A team of researchers found that humans exploit about 801 species of bivalves, a figure that adds 720 species to the 81 listed in the Food and Agriculture Organization of the United Nations’ Production Database. The team identified the traits like geographic diversity and adaptability that make them prime for aquaculture—humans tend to harvest bivalves that are large-bodied, occur in shallow waters, occupy a wide geographic area, and can survive in a large range of temperatures. 

Geography and climate adaptability are what make even the most used bivalve species less susceptible to the extinctions that have wiped out species in the past. Species including the Eastern oyster live in a wide range of climates all over the world that include a wide range of temperatures, and this adaptability promotes resilience against some of the natural drivers of extinction. However, increased demand for these species from hungry humans can put them and their ecosystems in danger. 

“We’re fortunate that the species we eat also tend to be more resistant to extinction,” study co-author and Smithsonian Institution research geologist Stewart Edie said in a statement. “But humans can transform the environment in the geologic blink of an eye, and we have to sustainably manage these species so they are available for generations that will come after us.”

Bivalve mollusks have been filtering water and feeding humans for thousands of years. The indigenous Calusa tribe sustainably harvested an estimated 18.6 billion oysters in Estero Bay, Florida and constructed an entire island and 30-foot high mounds out of their shells. However, for every sustainable use of bivalve aquaculture, there are also examples of overexploitation from European colonizers and overfishing. These practices have led to collapses of oyster populations in Maryland’s Chesapeake Bay, San Francisco Bay in California, and Botany Bay near Sydney, Australia. 

[Related: Oyster architecture could save our coastlines.]

“It is somewhat ironic that some of the traits that make bivalve species less vulnerable to extinction also make them far more attractive as a food source, being larger, and found in shallower waters in a wider geographical area,” study co-author and University of Birmingham macroecologist Shan Huang said in a statement. “The human effect, therefore, can disproportionately remove the strong species. By identifying these species and getting them recognised around the world, responsible fishing can diversify the species that are gathered and avoid making oysters the dodos of the sea.”

The team hopes that this data improves future conservation and management decisions, particularly their list of regions and species that are particularly prone to extinction. They also believe that this new list may help identify species that need further study to fully assess their current risk of extinction.

“We want to use what we learned from this study to identify any bivalves that are being harvested that we don’t already know about,” said Edie. “To manage bivalve populations effectively, we need to have a full picture of what species people are harvesting.”

The post Popular shellfish resist extinction in surprising ways appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
These moles may have been hiding for 3 million years https://www.popsci.com/environment/turkey-mole-species/ Mon, 14 Aug 2023 12:00:00 +0000 https://www.popsci.com/?p=562739
Talpa hakkariensis, found in the Hakkari region of southeastern Turkey, was identified as a new species of mole, highly distinctive in terms of both its morphology and DNA. The mole is peeking out of an underground burrow.
Talpa hakkariensis, found in the Hakkari region of southeastern Turkey, was identified as a new species of mole, highly distinctive in terms of both its morphology and DNA. University of Plymouth

A new species and new subspecies of the fuzzy subterranean mammals call the mountains of Turkey home.

The post These moles may have been hiding for 3 million years appeared first on Popular Science.

]]>
Talpa hakkariensis, found in the Hakkari region of southeastern Turkey, was identified as a new species of mole, highly distinctive in terms of both its morphology and DNA. The mole is peeking out of an underground burrow.
Talpa hakkariensis, found in the Hakkari region of southeastern Turkey, was identified as a new species of mole, highly distinctive in terms of both its morphology and DNA. University of Plymouth

Two newly-discovered types of moles have possibly been hiding in eastern Turkey’s mountains for as many as three million years. These hide-and-seek champions are named Talpa hakkariensis and Talpa davidiana tatvanensis, and they belong to a group of subterranean, invertebrate-eating mammals found across parts of Europe and Western Asia. The potential new species are described in a study published late last month in the Zoological Journal of the Linnean Society.

[Related: Like humans, naked mole-rats have regional accents.]

At least seven mole species are known to burrow in the grounds of North America and only one species (Talpa europaea) is in Britain. East of the United Kingdom, there are a number of different moles and many of them have small geographical regions. 

In this study, the team used DNA to confirm that these moles are distinct from others within the group and family. Both live in the mountains of eastern Turkey are able to survive conditions that range to over six feet of snow during the winter months to temperatures over 120 degrees Fahrenheit in the summer. 

“It is very rare to find new species of mammals today. There are only around 6,500 mammal species that have been identified across the world and, by comparison, there are around 400,000 species of beetles known, with an estimated 1-2 million on Earth,” study co-author and University of Plymouth biologist David Bilton said in a statement

On the surface, the moles in this study look similar to other mole species, since their underground dwellings can constrain the evolution of their shape and size.

“Our study highlights how, in such circumstances, we can under-estimate the true nature of biodiversity, even in groups like mammals, where most people would assume we know all the species with which we share the planet,” said Bilton. 

With these new additions, scientists have now identified 18 Eurasian moles and each of them have distinct genetic and physical characteristics. The team closely studied the size and shape of their various bodily structures, which helped them use specimens collected during the 19th century that are in museum collections. The complementary DNA analysis that compared them to other known mole species confirmed that they are distinct.

Found in the Hakkari region in southeastern Turkey, Talpa hakkariensis was identified as a completely new mole species. 

[Related: Star-nosed moles are nature’s speed-eating champions.]

Talpa davidiana tatvanensis is also found in southeastern Turkey near Bitlis. It was also identified as being morphologically distinct, but it has been classified as a subspecies of Talpa davidiana that was first identified in 1884. T. davidiana it is listed as data deficient by the International Union for Conservation of Nature (IUCN).

“We have no doubt that further investigations will reveal additional diversity, and that more new species of mole remain undiscovered in this and adjacent regions. Amid increasing calls to preserve global biodiversity, if we are looking to protect species we need to know they exist in the first place,” Bilton said. “Through this study, we have established something of a hidden pocket of biodiversity and know far more about the species that live within it than previously. That will be critical for conservation experts, and society as a whole, when considering how best to manage this part of the planet.”

The post These moles may have been hiding for 3 million years appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This tiny, 8-foot long whale swam off Egypt’s coast 41 million years ago https://www.popsci.com/science/tiny-ancient-whale-tutcetus-rayanensis/ Mon, 14 Aug 2023 10:00:00 +0000 https://www.popsci.com/?p=562540
An illustration of an ancient whale against a sea-blue background.
Tutcetus rayanensis swimming in the Tethys ocean of present-day Egypt, 41 million years ago, in an illustration. Ahmed Morsi and Hesham Sallam

The miniature species, Tutcetus rayanensis, is named after King Tut.

The post This tiny, 8-foot long whale swam off Egypt’s coast 41 million years ago appeared first on Popular Science.

]]>
An illustration of an ancient whale against a sea-blue background.
Tutcetus rayanensis swimming in the Tethys ocean of present-day Egypt, 41 million years ago, in an illustration. Ahmed Morsi and Hesham Sallam

Antarctic blue whales, the largest animals on Earth, can reach 98 feet from mouth to tail. But to get to this massive length, these mammals needed the right conditions to grow, whether that was more food or protection from danger—perks of living in water. 

Four hundred million years ago, the pre-mammalian ancestors of the ocean’s behemoths roamed on land on four legs. Ancestral whales returned to the sea 350 million years later. They likely spent so much of their lives in the water that, over time, their bodies completely adapted to swimming. But it’s unclear how much of this evolutionary history was amphibious before they fully submerged in the ocean.

Paleontologists in Egypt now have a better idea of what happened during this critical period of whale evolution. In a study published Thursday in Communications Biology, they unearthed fossilized remains of a miniature whale species that lived 41 million years ago. This extinct family, the basilosaurids, represents one of the earliest whale species to become fully aquatic. Though, if you saw one swimming in today’s seas, you might initially mistake it for a large fish. The newfound whale was only 8.2 feet long—12 times smaller than today’s blue whale.

[Related: This giant sea cow-like whale may have been the heaviest creature to ever live on Earth]

The study authors named the mini whale Tutcetus rayanensis, after the ancient Egyptian pharaoh Tutankhamun—a fitting name for a family of whales known as the “king of ancient seas,” says Hesham Sallam, an Egyptian paleontologist at The American University in Cairo and senior author of the study. The fossilized whale, like King Tut, died very young.

How the vertebrate and skull bones are fused suggests the whale was close to adulthood but did not reach it. It’s likely this whale specimen died before adulthood, though it was already sexually mature. The fossil remains show it was old enough to have adult molars but too young to have permanent premolars. Meanwhile, its enamel, the outer layer of its teeth, was very smooth, indicating it fed on fish, octopus, or other soft prey. Both are common features in mammals with shorter life cycles. According to Sallam, the teeth patterns also told them how this whale spent all of its time in the ocean, rather than an amphibious lifestyle like they previously envisioned for whale ancestors of this time.

Three paleontologists next to fossil whale bones.
Egyptian paleontologists Abdullah Gohar, Mohamed Sameh, and Hesham Sallam (from left) next to fossils of the newly identified basilosaurid whale, Tutcetus rayanensis. Hesham Sallam

The transition from a semiaquatic lifestyle to a fully aquatic one, as the basilosaurids did, is an area where more fossil data is needed to understand how these creatures evolved, says Ryan Bebej, an associate professor of biology at Calvin University in Michigan, who was not involved in the study. “Given its geologic age and phylogenetic position, Tutcetus is an important data point in helping us understand the earliest fully aquatic cetaceans.”

But why were these aquatic creatures dwarves compared to other basilosaurids? Basilosaurids around this time period were 13 to 59 feet in length. In contrast, this ancient whale was approximately 8 feet long and weighed around 412 pounds, making it “the smallest whale ever,” Sallam says. Today’s smallest whale, the dwarf sperm whale, grows just a little longer, at up to 9 feet

Its little stature was likely an evolutionary response from a global warming event called the Lutetian thermal maximum. Forty-two million years ago, temperatures in the South Atlantic ocean rose by about 3.6 degrees Fahrenheit. Because smaller bodies lose heat more quickly than larger bodies, the mini size of these whales probably helped them survive. Sallam says this biological trait—prioritizing a tiny shape—is still seen today in animals living in warmer climates.

We don’t know how big (or small) this ancient whale would have grown to as an adult. But its bones provide valuable information on the evolution of aquatic creatures As they adapted to life in the water, cetaceans diversified in a variety of ways, and this little king of the ancient seas is just one regal example.

The post This tiny, 8-foot long whale swam off Egypt’s coast 41 million years ago appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How might life migrate through the universe? https://www.popsci.com/science/how-might-life-migrate-through-the-universe/ Mon, 14 Aug 2023 01:00:00 +0000 https://www.popsci.com/?p=562418
Our galaxy, the Milky Way.
We are used to thinking of space as vast and mostly empty, completely unsuitable for life. Perhaps we should change our minds. NASA

Notes on interstellar hitchhikers and the origins of life.

The post How might life migrate through the universe? appeared first on Popular Science.

]]>
Our galaxy, the Milky Way.
We are used to thinking of space as vast and mostly empty, completely unsuitable for life. Perhaps we should change our minds. NASA

This article is excerpted from Roberto Battiston’s book “First Dawn: From the Big Bang to Our Future in Space.” This article originally published on MIT Press Reader.

By the time we realized that there was an extrasolar intruder, ‘Oumuamua, named after the Hawaiian word for “scout,” had already passed its closest point to the Sun and was leaving, as fast and stealthily as it had arrived. We are talking about the first sighting, in 2017, of an asteroid from another area of the galaxy, a messenger from distant worlds. What do we know about this dark, probably cigar-shaped shard, which visited our solar system with a trajectory and velocity that allowed it to leave so quickly?

Very little. We know that it was not made of ice, so it must be of the rocky type. It did not ignite like a comet as it approached the Sun. We know that it does not emit electromagnetic radiation. The most powerful radio telescopes have found no trace of it. Its orbit is gravitational, determined by the attraction of the Sun; a small, non-inertial component can be explained by the effect of the pressure of the radiation in our star’s vicinity. We know that its speed, before entering the solar system, was compatible with the characteristic speeds of celestial bodies in the region of the Milky Way, of which our solar system is part. This allows us to exclude the idea that it comes from one of the dozen stars closest to us, as its velocity would have been too high. However, we have identified four more distant stars near which it could have passed in the last million years, with a velocity low enough that it could have originated in one of these star systems.

So, we don’t know exactly where it comes from, if it has already been in our solar system, how many other systems it has visited, or its composition. According to one hypothesis, it could be a fragment of an exoplanet destroyed by tidal effects. In this case it would be an object much rarer than main belt asteroids or objects from the Oort cloud, which formed directly from the original nebula. What is certain is that, on timescales of the order of millions or tens of millions of years, fragments like ‘Oumuamua can bring different star systems into contact. One estimate even predicts that 10,000 extrasolar asteroids cross Neptune’s orbit on a daily basis.

On timescales of the order of millions or tens of millions of years, fragments like ‘Oumuamua can bring different star systems into contact.

It would be interesting to be able to explore one to see what it was made of. This type of asteroid would seem to be the kind of vector suitable for transporting life, in hibernating form, from one part of the galaxy to another. While a space mission of this kind would be difficult because of the speed at which these fragments are moving, it wouldn’t be impossible, considering that in the future our observational capacity will improve considerably, allowing us to identify these bodies sooner than we were able to identify ‘Oumuamua. Another idea has to do with the possibility that some of these extrasolar objects have become trapped in our solar system after having lost some of their energy in a close encounter with Jupiter; a few candidates have already been identified. This approach would make an exploratory mission much easier to accomplish.

However, even the planets in our own solar system are in communication and exchanging material at a fairly high rate. Not everyone knows that we have about 10 rock samples from Mars here on Earth, even though there has not yet been a mission that brought back material from that planet. The meteorite bombardment on Mars results in fragments that, given its thin atmosphere, can be projected into space. Some of them can reach the Earth, penetrate our atmosphere, and fall like normal meteorites. By comparing the isotopic composition of various meteorites with those measured on Mars during NASA’s robotic missions to the planet, we are able to identify and distinguish Martian meteorites from all the others.

Finally, we should remember that it takes the solar system about 220 million years to revolve around the center of the galaxy. Since it formed 4.5 billion years ago, it has made the full circuit about 20 times. This means that, in the timescale in which life emerged on Earth, the newborn solar system made at least three complete circuits, coming into contact with fragments from distant star systems.

In 2019 I participated in a Breakthrough Discuss conference in Berkeley on “Migration of Life in the Universe.” I was puzzled by the conference theme: We know almost nothing about life in the universe, I thought, so how we could talk about migration of life? But recalling the observation of ‘Oumuamua, I did participate and I am glad I did. I was surprised by the scientific quality of the talks and by the extreme fascination of the topic. Life probably doesn’t need massive, rocky starships to move from one planetary system to another. Considering the minuscule size of bacteria, the smallest living organisms we know, or even viruses, which can live and reproduce inside bacteria, we can also imagine other mechanisms suitable for this kind of transport.

Microscopic ice crystals and dust, for example, containing bacteria and spores capable of withstanding the conditions in space, can spread into space from areas of a planet’s upper atmosphere. When the dimensions become microscopic, the relationship between gravitational force, which is dependent on mass, and the thrust due to stellar radiation, which is dependent on surface area, tips the balance in favor of the latter. It is as if a planet were leaving a trail of perfume behind it. Planetary dust containing hibernating life can be pushed by radiation until it reaches high velocities and moves beyond a given star system, spreading to other systems or nebulae, where it can find suitable conditions to reproduce and evolve. We are used to thinking of space as vast and mostly empty, completely unsuitable for life. Perhaps we should change our minds. Space is less empty than we might think. In reality, the different parts of the galaxy communicate by exchanging material on timescales comparable to those of the appearance of life on our planet.

We know of various living species that can endure extremely hostile conditions such as those in space: a nearly perfect vacuum, extreme temperatures, and ionizing radiation.

But how possible is it for life to survive in space? Well, even here, nature surprises us. In fact, we know of various living species that can endure extremely hostile conditions such as those in space: a nearly perfect vacuum, extreme temperatures, and ionizing radiation. Different kinds of lichens, bacteria, and spores are able to survive, losing all of their water and entering into a condition of total inactivity — which can last for extremely long periods — from which they can emerge, once they find themselves in a humid atmosphere again. Tests of this kind have been done on the International Space Station and in various laboratories. Even plankton, made of more complex organisms, shows a capacity to resist these prohibitive conditions.

A truly extraordinary case is that of the tardigrades. These very common micro-animals are about a half a millimeter long and live in water. They have eight legs, a mouth and a digestive system, as well as a simple nerve and brain structure. They are also able to sexually reproduce. They exist in nature in thousands of different versions and have a metabolism with unique characteristics. In order to withstand prolonged drought conditions, their bodies can achieve complete dehydration, losing around 90 percent of their water and curling up into a tiny, barrel-shaped structure. In other words, it’s as if they freeze-dry themselves. Once this process is complete, their metabolism becomes 10,000 times slower. The most amazing thing is that they can stay in this state for decades, only to wake up again within 20 or 30 minutes once exposed to moisture. But there’s more. When in a dehydrated state, they can withstand the vacuum of space as well as pressures higher than normal atmospheric pressures, temperatures near absolute zero or temperatures up to 150°C. Their radiation tolerance threshold is hundreds of times higher than what would be deadly for humans. The secret of their ability to harden is due to a sugar, trehalose, which is also widely used in the food industry. When dried, this sugar replaces the water molecules in the cells, leaving the animal in a kind of vitrified state.

In addition, the tardigrade’s DNA is protected by a protein that reduces radiation damage. Is this information enough to make us assume that these micro-animals come from space? I would say no. Their unusual metabolism is more likely the result of evolutionary adaptation that happened on our planet. In fact, tardigrades are among the very few living beings that have emerged unscathed from all five extinction events that have occurred on Earth. That is why they are the best candidates for a long journey into space aboard a meteorite or a comet. Recently, tardigrades have achieved a bit of media notoriety resulting from the Beresheet mission, a private probe launched by Israel, that crashed on the Moon in early April of 2019. The probe was carrying a colony of these micro-animals, in their dehydrated state. Given their microscopic size, it is likely that they survived the crash and will remain inactive for a long time to come, ready to be reawakened from their hibernation. By replacing the Israeli probe with an asteroid, we have a textbook example of how life might have arrived on Earth.

Or how life could have migrated from Earth to other planets in our galaxy.

By replacing the Israeli probe with an asteroid, we have a textbook example of how life might have arrived on Earth.

So, the problem of the origin of life remains open, even if, step by step, we are making progress toward a solution. In the last decade, increasingly powerful calculation instruments have allowed us to reproduce, starting from the first principles of quantum mechanics, the formation of increasingly large and complex molecular systems, now made up of thousands of atoms. The field of computational biology is growing at a formidable rate; it is now only a matter of computing power.

At the same time we have dramatically developed our ability to decode and manipulate DNA, up to the creation of the first simplified genomic structures, derived from living organisms and able to reproduce. We are now talking about synthetic life, built around human-designed DNA, a field with huge development prospects.

Therefore, it is likely that the creation of the complex molecular structures needed for life or the confirmation of the existence of islands of genomic stability in the evolution of viral and bacterial species are objectives that, in future, will be within our reach. At that point, we will have another tool for understanding how life on Earth developed. Who knows? Perhaps we will discover that aliens are particular biological life forms that have lived with us since the beginning of time; and we were looking for them on Mars or below the icy surface of Jupiter and Saturn’s moons!


Roberto Battiston is a physicist who specializes in the field of experimental fundamental and elementary particle physics, both with particle accelerators and in space. He is the author of several books, including “First Dawn,” from which this article is excerpted.

The post How might life migrate through the universe? appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Mysterious skull points to a possible new branch on human family tree https://www.popsci.com/science/late-middle-pleistocene-human-skull-china/ Fri, 11 Aug 2023 16:03:32 +0000 https://www.popsci.com/?p=562430
Archaeologists dig in the dirt with a brush and scraper.
Some newly discovered specimens could shake up the timeline of hominid evolution. Deposit Photos

A roughly 300,000 year-old specimen mixes traits of Homo erectus and Denisovans.

The post Mysterious skull points to a possible new branch on human family tree appeared first on Popular Science.

]]>
Archaeologists dig in the dirt with a brush and scraper.
Some newly discovered specimens could shake up the timeline of hominid evolution. Deposit Photos

A 300,000 year-old fossilized skull discovered in China is proving to be an evolutionary puzzle. The specimen dating back to the late middle Pleistocene doesn’t look like other skulls that have been found from this time period, and could possibly point to a previously unknown human species. The findings were published late last month in the Journal of Human Evolution.

[Related: Leftovers of a 2,000-year-old curry discovered on stone cooking tools.]

A team of scientists from institutions in Spain, the United Kingdom, and China found the lower jaw–or mandible–and 15 other separate specimens in eastern China’s Hualongdong region in 2015. The mandible in question is named HLD 6 and dates back to an important period in hominin evolution, just before some of the traits that are still seen in modern humans began to evolve in East Asia. 

The study noted that HLD 6 was “unexpected” since it doesn’t currently fit into any known taxonomic groups. The skull has similar facial features to those of early modern humans. The skull could potentially belong to a direct human ancestor called Homo erectus sometime between 550,000 and 750,000 years ago. 

However, it also shares some of the characteristics of the Denisovans, who belong on a different branch on the human family tree than Homo Erectus. HLD 6 does not appear to have a chin, just like previously discovered Denisovan specimens. Denisovans are now extinct and split from Neanderthals about 400,000 years ago.

The skull of the ancient hominin from China. CREDIT: Wu Xiujie (IVPP).
The skull of the ancient hominin from China. CREDIT: Wu Xiujie (IVPP).

Given that the specimen has a mixture of Homo erectus and Denisovan characteristics, they believe this was potentially a hybrid of modern human and ancient hominid. The team notes that this combination of facial features hasn’t been observed in East Asia hominids, which suggests that some of the traits found in modern humans began to appear as far back as 300,000 years ago.

[Related: A javelin-like stick shows early humans may have been keen woodworkers.]

They believe that the fossils belonged to a 12- to 13-year-old child. The team did not have an adult skull belonging to this same species to compare it with, but they used Middle and Late Pleistocene hominin skulls of similar and adult age. They noticed that the shape patterns remained the same regardless of age, which they say supports the theory that this could be a different human species. 

The history of the human family tree is constantly changing, as scientists develop better techniques for finding and analyzing specimens. A study published in June proposed that humans entered the forests of Asia about 400,000 years earlier than they previously believed. Humans and Neanderthals also could have been interbreeding earlier and in three separate waves that eventually led to the extinction of Neanderthals. 
If this new theory proves to be correct, a new “pre-sapiens specimen” branch could be added to this complex family tree and bring more insight into human evolution.

The post Mysterious skull points to a possible new branch on human family tree appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
What to know about the newly dominant ‘Eris’ COVID variant https://www.popsci.com/health/new-covid-variant-eris/ Thu, 10 Aug 2023 10:00:00 +0000 https://www.popsci.com/?p=562150
Hands passing out blue medical masks.
Wearing masks remains a great way to protect yourself from airborne infections. Depositphotos

This version of the coronavirus, a descendant of Omicron, may stick around through the winter.

The post What to know about the newly dominant ‘Eris’ COVID variant appeared first on Popular Science.

]]>
Hands passing out blue medical masks.
Wearing masks remains a great way to protect yourself from airborne infections. Depositphotos

As summer winds down, there’s a new COVID variant on the rise. EG.5.1, nicknamed the “Eris” variant, has become the dominant strain in the US, making up 17.3 percent of cases in the US. 

The variant is a descendant of the Omicron, which itself had become the dominant COVID subtype by fall 2022. There’s not a lot of data right now on how severe or infectious this subvariant is compared to its parent strain or the other ones we’ve faced in the past. But based on its increasing caseloads, experts like Scott Roberts, an infectious disease specialist at Yale University, predict this one will stick around through the winter. “The question is how long will it stay, and will [Eris] continue to evolve in a few months.”

Fortunately, this isn’t 2020. We’re more prepared to treat COVID. Updated vaccine boosters are on the way this fall that will provide immune defenses against these types of strains. “We are optimistic that the new, updated boosters will offer ample protection against this current variant,” as Roberts says.

Where did Eris come from?

The EG.5.1 variant has been unofficially called Eris on social media after the Greek goddess of chaos, strife, and discord. Genetic sequencing suggests it is a descendant of an Omicron subvariant called XBB1.5, which was responsible for an outbreak of COVID infections earlier this year. “It’s part of this ongoing evolutionary tree from Omicron,” Roberts explains. Eris differs somewhat from others in the XBB lineage because there are new mutations on its spike protein, the part of the virus that lets it latch to and infect cells. 

Where is Eris spreading?

The World Health Organization has labeled Eris as a “variant of interest” as it spreads worldwide. Recently, it has caused COVID cases to spike in the UK. In the US, the latest CDC numbers show Eris is concentrated on both coasts. States like New York have been the hardest, with a 55 percent surge in COVID infections caused by the Eris variant above the previous week. Overall, though, the national test positivity rate is down to 9 percent, when it was nearly 14 percent this time last year, according to the CDC. 

[Related: Your guide to COVID testing for the unforeseeable future]

Linda Yancey, an infectious disease specialist at Memorial Hermann Health System in Houston, says health agencies likely noticed the outbreak in these two countries thanks to aggressive surveillance. “If we could expand out to the rest of the world, the picture would almost certainly look the same,” she says. There have been reports of Eris traveling through Asia, too, and possibly through Australia

Is Eris more contagious or dangerous?

The new variant still acts very similar to all the other Omicron strains, says Yancey. Evidence so far does not seem to suggest that it causes more severe illness, and the number of COVID deaths has not increased. The symptoms reported in Eris infections are familiar signs of COVID, including fever, cough, fatigue, and headaches.

In general, Omicron strains cause less severe disease because the virus doesn’t reach most people’s lungs, Yancey says. “So: Yay, they tend to cause less serious illness,” she says. “But, boo, they also tend to cause asymptomatic disease, so people don’t know they are infected and don’t isolate or wear masks.” No official studies have yet calculated Eris’s rate of transmission, and Yancey says that as a new strain it would make sense that it would at least be more contagious. “New strains have to out-compete old strains so the new ones are generally a little bit more easy to transmit.”

Do the vaccines protect against Eris?

There are no vaccines that specifically target EG.5, and scientists are still unsure whether these mutations help Eris bypass vaccine-induced immunity. However, since there are spike protein mutations and an increase in COVID hospitalizations, Roberts says the new variant is likely capable of thwarting some immune defenses. Still, he says, “we predict that vaccine immunity will still hold up quite well against this new Eris variant.” 

From his experience, the ones who remain most at risk appear to be the unvaccinated. “In our hospital, we have seen almost a tripling or quadrupling over the past several weeks,” Roberts adds, though cases remain “well below what we saw last summer and winter.” People who are not vaccinated or have not received all of the shots make up the majority of those hospitalizations. 

[Related: What’s the difference between COVID, flu, and cold symptoms?]

For people who are unvaccinated, Roberts advises not to wait and to get last year’s bivalent booster. He says it should still provide some protection against this current variant, because it is a descendent of Omicron, which that vaccine has shown to protect against. 

Those who are up to date on their vaccinations do not need to re-up again and should instead wait for October’s booster. The new booster won’t include the specific EG.5 subvariant, but it will target the XBB strains. Both Roberts and Yancy recommend getting the booster when it rolls out this fall.

How concerned should we be?

Both infectious disease experts agree people need to be aware of—but not worried about—Eris. Expect to see a wave of cases as the US enters the winter months, but it should not be as big as those in past years. “We have a lot of herd immunity now compared to where we were a year ago,” says Roberts. “Every year as we go on, we’ll see successive decreases in the severity of waves.”

Beyond getting an updated booster, Roberts says to assess your personal risk tolerance levels. While we shouldn’t foresee any mask mandates, if you fall under the high-risk category, it’s a good idea to mask up when in crowds or indoor spaces with poor ventilation. You’ll want to keep some rapid COVID tests at home in case you need to test. Continue washing your hands and staying home when you’re sick to avoid getting and spreading Eris to others.

The post What to know about the newly dominant ‘Eris’ COVID variant appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Rare parasites found in 200 million-year-old reptile poop https://www.popsci.com/environment/parasites-200-million-year-old-fossilized-poop/ Wed, 09 Aug 2023 18:00:00 +0000 https://www.popsci.com/?p=562069
A man is looking in a glass case of coprolites collected in Nong Yakong village, Chaiyaphum Province, Thailand.
Nonsrirach et al. CC-BY 4.0

Even ancient aquatic predators can't avoid the occasional pest.

The post Rare parasites found in 200 million-year-old reptile poop appeared first on Popular Science.

]]>
A man is looking in a glass case of coprolites collected in Nong Yakong village, Chaiyaphum Province, Thailand.
Nonsrirach et al. CC-BY 4.0

What goes into the body, must ultimately come out.  The same goes for the parasites living within a host. The parasite-host relationship is also pretty old, and some newly found fossilized feces show the ancient parasites infected an aquatic predator more than 200 million years ago. The findings are published August 9 in the open-access journal PLOS ONE.

[Related: ‘Brainwashing’ parasites inherit a strange genetic gap.]

Despite being a common and important player in the food web due to their role in regulating overpopulation within the ecosystem, ancient parasites are difficult to study in the fossil record. They typically inhabit their host’s soft tissues, which are not usually preserved in fossils like tougher parts like bones. However, traces of parasites can sometimes be identified in fossilized feces which are called coprolites

“Coprolite is a significant paleontological treasure trove, containing several undiscovered fossils and expanding our understanding of ancient ecosystems and food chains,” the authors wrote in a statement.

In this study, the team describes evidence found in coprolite dating back to the Late Triassic from Thailand’s Huai Hin Lat Formation, which is over 200 million years old. The coprolite is shaped like a cylinder and more than 2.7 inches long. The team believes that it was likely produced by some species of a crocodile-like predator called a phytosaur based on the shape of the fossilized poop and the remains of phytosaurs have been found in the area for decades

Within the thin sections of coprolite, the team found six small, round, organic structures roughly between only 50 to 150 micrometers long. One of these microscopic beauties is an oval-shaped structure with a thick shell which the team identified as the egg of a parasitic nematode worm called Ascaridida. The other five structures possibly represent additional worm eggs or protozoan cysts. 

“The discovery of at least six parasites with at least five different morphotypes in a single coprolite suggests that multi-parasite infection was common had already diversified by the late

Triassic,” the authors wrote in the study

It is believed to be the first record of parasites in a terrestrial vertebrate host in Asia from the Late Triassic period, when the Earth was warmer and more humid than it is today. It also offers a glimpse into an ancient animal who was infected by multiple species of parasite as it went about its life. 

[Related: What prehistoric poop reveals about extinct giant animals.]

“The presence of the Ascaridida eggs and the evidence for multi-infection found in the coprolite can presumably be explained by the predatory habits of the host, which would have been parasitized by feeding on parasitized fishes, amphibians, or other reptiles,” they wrote.

This finding also adds to the few known examples of nematode eggs preserved within the fossilized poop in prehistoric animals and will add more understanding to how parasites were distributed on Earth millions of years ago.

The post Rare parasites found in 200 million-year-old reptile poop appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Why medical engineers tattooed a single cell with gold https://www.popsci.com/technology/gold-cell-tattoo/ Wed, 09 Aug 2023 17:15:05 +0000 https://www.popsci.com/?p=562133
Microscopic image of individual cell tattooed with gold array
The tattooing can function like a barcode to track cellular movements. KAM SANG KWOK AND SOO JIN CHOI, GRACIAS LAB/JOHNS HOPKINS UNIVERSITY

The tiny tattoos could one day help monitor health at the cellular level.

The post Why medical engineers tattooed a single cell with gold appeared first on Popular Science.

]]>
Microscopic image of individual cell tattooed with gold array
The tattooing can function like a barcode to track cellular movements. KAM SANG KWOK AND SOO JIN CHOI, GRACIAS LAB/JOHNS HOPKINS UNIVERSITY

An estimated one-in-four Americans have a tattoo, but it’s safe to say pretty much all of them are visible to the naked eye in some shape or form. But thanks to new breakthroughs in nanoengineering, tattooing can now be done at the cellular level—not for artistic expression, per se, but for a myriad of potential medical benefits.

According to research published this month via Nano Letters, engineers at Johns Hopkins University have developed a miniscule tattooing procedure capable of adhering to individual, live cells. Instead of ink, however, experts attached gold arrays to fibroblasts, cells that sustain body tissue. The team, led by professor of chemical and biomolecular engineering David Gracias, then treated the arrays with molecular glues before transferring them directly onto cells via a dissolvable hydrogel laminate. According to JHU on August 7, the final results are akin to scannable QR codes and barcodes.

[Related: Tattoos are permanent, but the science behind them just shifted.]

“We’re talking about putting something like an electronic tattoo on a living object tens of times smaller than the head of a pin,” David Gracias said via the statement. “It’s the first step toward attaching sensors and electronics on live cells.”

What makes the new technique so particularly impressive is that “tattooing” the cells does not adversely affect their health or lifespan. According to researchers, attaching optical and electronic sensors to individual cells has previously caused been tricky, but methods like the tattoos could hopefully allow such technology to be one day deployed in real-world medical settings.

Gold nanowire array on a rat brain
Gold nanowire array on a rat brain. Credit: KAM SANG KWOK AND SOO JIN CHOI, GRACIAS LAB/JOHNS HOPKINS UNIVERSITY

Nanoscale cellular tattooing could open up entirely new avenues of health monitoring for medical experts. As Gracias explains, doctors could hypothetically track the health of isolated cells, thereby potentially identifying, diagnosing, and treating diseases far earlier than is currently possible.

“If you imagine where this is all going in the future, we would like to have sensors to remotely monitor and control the state of individual cells and the environment surrounding those cells in real time,” said Gracias.

The current tattoo tech has a few limitations at the moment—namely, that its lifespan maxes out at around 16 hours. The method is also only compatible at the moment with certain cells such as fibroblasts. Going forward, the team intends to increase the nanoarrays’ durability, longevity, and complexity, while also opening up the technique to a host of other cell varieties.

The post Why medical engineers tattooed a single cell with gold appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Life after death never looked so beautiful https://www.popsci.com/science/divya-anantharaman-gotham-taxidermy-photos/ Tue, 08 Aug 2023 13:01:00 +0000 https://www.popsci.com/?p=560127
taxidermied two-headed goat kid
Ted Cavanaugh for Popular Science

Nature plays tricks on us all the time—taxidermy gives Divya Anantharaman a way to play back.

The post Life after death never looked so beautiful appeared first on Popular Science.

]]>
taxidermied two-headed goat kid
Ted Cavanaugh for Popular Science

WHEN YOU LIVE in a big city, sometimes nature comes at you secondhand—a photo from the apple farm upstate, eggs in the grocery store. But for Miami-born and Brooklyn-based Divya Anantharaman, the founder of Gotham Taxidermy, nature is hardly that binary. “Nature is the pigeon that’s on the sidewalk under the Gowanus Bridge,” they say. “It’s the squirrels you see at the park. It doesn’t exist in this pristine box separate from humanity.”

In their work, nothing is quite binary. In Anantharaman’s fantastical, ethereal creations, the beauty of life is captured after death. In many of the pieces, what you see isn’t strictly textbook science or purely creative. For a two-headed goat kid, the chances of surviving more than a week are one in 3 million according to the World Oddities Expo, which now owns this piece. But in Anantharaman’s work, the joy of being young and alive is frozen in time through anatomical specificity and an artful eye. 

gloved hands use syringe to inject small bird, trays of taxidermy tools
Ted Cavanaugh for Popular Science

Nobody looks their best after death—including adorable little birds. Here, before skinning it, Anantharaman uses a syringe filled with water and a mild soap to inject a little life into the bird’s eyes and body. 

display of replica bats with roses and other flowers, berries, on wooden stand
Ted Cavanaugh for Popular Science

In all of Anantharaman’s work there is a strong sense of kindness, something that isn’t always seen in the world of taxidermied creatures. Taxidermied bats, for example, are popular trinkets with a questionable ethical background. These lifelike Victorian bats are replicas—the gothic aesthetic with no loss of life. 

taxidermied magpie faces off with taxidermied mouse on branch
Ted Cavanaugh for Popular Science

The predator-prey dynamic is more than a lion stalking a gazelle on Animal Planet. Small, unassuming creatures must also compete to survive in the life-giving, complex ritual. In a transfixed stare-down between a black-throated magpie and its potential rodent dinner, Anantharaman displays the hunter and the hunted with a sense of tenderness. 

gloved hands hold bird in order to remove its skin and skull; taxidermy tools sit on table and hang on wall
Ted Cavanaugh for Popular Science

One of the biggest misconceptions about taxidermy, Anantharaman says, is that it’s just embalming. Taxidermy literally means “to move the skin,” they add. This process requires care and delicacy in removing the slightest bones and breakable skull so they can be re-created to reflect a living creature’s symmetry and movement.

Divya Anantharaman sits at desk, works on replica snowy owl mount, with other taxidermied animals and materials in background
Ted Cavanaugh for Popular Science

Rarities draw us in—a lost antique, a precious gem. For some, that always-out-of-reach prize is a rare or endangered animal. But Anantharaman can still build the unattainable, such as by creating a snowy owl replica using the feathers of chickens and turkeys. With its menacing glower, you’d never know this Arctic predator is a fake.  

taxidermied fawn stands on grass and bends down toward flower and apple while butterflies alight on parts of its body
Ted Cavanaugh for Popular Science

Like something out of a fairy tale, a curious fawn steps out into a soft field filled with fruits and flowers. But there is a darker secret to this project—the laminated butterfly wings that gently cover the young deer’s petite frame mirror the real-life attraction of the insects to dead bodies. 

flamingo with pins in its skin undergoes taxidermy process
Ted Cavanaugh for Popular Science

This glowing Chilean flamingo is a work in progress, even if its dignified face would tell you otherwise. The tiny pins along its graceful neck are holding the skin and feathers of its deceased form in place as Anantharaman adds the finishing touches to its wacky, but realistic, final pose. 

cat skull mounted on platform and decorated with flowers
Ted Cavanaugh for Popular Science

Many of the creatures in Anantharaman’s menagerie belonged to no one but themselves, but this cat skull is different. It was once part of an adored pet, whose owner requested this gorgeous, but often taboo, celebration of life. “With pets, you’re not just working on someone’s memories of their animal,” they say. “You’re working on the relationship they had to that animal.” 

bird heads and leg, plus other animal parts made from foam
Ted Cavanaugh for Popular Science

In the process between death and rebirth, bits and pieces of an animal can shrink or change. In making a creature as dynamic after death as it was in life, even the finest taxidermists need a little help in the form of a head or leg when the real thing doesn’t do its subject justice. 

Divya Anantharaman holds up leopard skin, wall of taxidermy tools in background
Ted Cavanaugh for Popular Science

The history of taxidermy can be painful, presenting often literal representations of brutality. But for those given the remains of a rare creature, honoring its memory for as long as possible can mean revitalizing what is left of the magnificent beast.

taxidermied budgie parakeet sits on branch
Ted Cavanaugh for Popular Science

This budgie parakeet, another cherished pet, rests in peaceful slumber just as it did during its life—a bit fluffed out, with a sleepy head tucked under its wing. The beloved bird’s owner was fond of drawing the sweet creature in mystical settings, which Anantharaman re-created with a smattering of soft moss and dainty crystal raindrops. 

Divya Anantharaman touches up cassowary replica
Ted Cavanaugh for Popular Science

Some taxidermy jobs start in the garbage, like this spectacular cassowary. When this mishap was found in a waste facility, not much could be salvaged. But with patience and a hand-sculpted, wrinkle-filled “dinosaur head,” Anantharaman was able to go beyond just restoring its former glory while preserving its traditional essence. 

white owl in progress with taxidermy tools
Ted Cavanaugh for Popular Science

Owls have what’s called a facial disc, a cupped arrangement of feathers surrounding the eyes. In life, this unique feature helps owls collect sound waves, and the bird can adjust its shape to focus on prey shuffling under snow cover or hiding in plants. Placing the feathers requires patience, impeccable grooming, and a sense of humor. “It’s really funny to see it in this halfway state,” Anantharaman says. “It’s just a little owl in progress.”

two taxidermied songbirds with pins holding skin in place
Ted Cavanaugh for Popular Science

In museums and scientific displays, the taxidermied creatures might look far different from the ones we encounter in our day-to-day lives. This project, which Anantharaman is building for a high school, features deceased local birds collected by an enthusiastic (and permitted, of course) teacher who hopes to bring an ecological diorama to the classroom. 

tidy peg wall holding varied tools used by taxidermist
Ted Cavanaugh for Popular Science

Anantharaman’s workshop is no morgue, but it still requires saws, respirators, and other devices for the rough-and-tumble aspects of taxidermy. Keeping an impeccably organized wall of tools is also emotional for the artist—a celebration of the space they use to create their multidimensional work. 

featherless starling held in place by taxidermist's pins
Ted Cavanaugh for Popular Science

When you think of an artist’s model, your brain may go to a scantily clad human muse. This starling is certainly nude, but it’s also an expert poser that Anantharaman can move however they like. Once this specimen is out of the freezer, Anantharaman has around 20 minutes to turn it into a dynamic fighter or a stately presence. 

Read more PopSci+ stories.

The post Life after death never looked so beautiful appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The swirls and whorls of your hairline come from multiple genes https://www.popsci.com/science/hair-whorl-genetics/ Wed, 09 Aug 2023 13:00:00 +0000 https://www.popsci.com/?p=562033
A hair whorl is a patch of hair growing in a circular pattern around a single point that is determined by the orientation of hair follicles.
A hair whorl is a patch of hair growing in a circular pattern around a single point that is determined by the orientation of hair follicles. Deposit Photos

Hair woes are universal—but hair whorls are unique.

The post The swirls and whorls of your hairline come from multiple genes appeared first on Popular Science.

]]>
A hair whorl is a patch of hair growing in a circular pattern around a single point that is determined by the orientation of hair follicles.
A hair whorl is a patch of hair growing in a circular pattern around a single point that is determined by the orientation of hair follicles. Deposit Photos

Bad hair days are simply part of life.  Scientists are starting to figure out more about the science of luscious locks, such as the connections they have to our genes and other biological traits. Silver foxes could sport gray locks due to faulty stem cells, and better understanding the unique properties of curly hair could help create better hair care products. 

[Related: What’s at the root of gray hairs?]

Now, a gene mapping study on human scalp hair whorls—a patch of hair growing in a circular pattern around a single point that is determined by the orientation of hair follicles—shows that these swirls have a genetic basis. The study published August 9 in the Journal of Investigative Dermatology found that hair whorls are affected by multiple genes and identified four associated genetic variants that potentially influence hair whorl direction.

Hair whorls are an easily observed human trait. Scalp hair whorl pattern is typically defined by either a single or double whorl and the direction of the whorl direction (clockwise, counterclockwise, or diffuse). Since atypical whorl patterns have been seen in some patients with abnormal neurological development, studying and understanding the genetic influence on whorl patterns may help scientists better understand some important biological processes. 

“We know very little about why we look like we do. Our group has been looking for the genes underlying various interesting traits of physical appearance, including fingerprint patterns, eyebrow thickness, earlobe shape and hair curliness. Hair whorls are one of the traits that we were curious about,” study co-author and Chinese Academy of Sciences Sijia Wang said in a statement. Wang specializes in dermatogenomics.

In this genome-wide association study, the team used data on scalp hair whorls among 2,149 individuals from the China’s National Survey of Physical Traits cohort and was followed by a replication study of 1,950 individuals from the Taizhou Longitudinal Study cohort.

They found four associated genetic variants that are likely candidates for influencing hair whorl direction. They potentially do this by regulating the cell polarity of hair follicles, with closure of cranial neural tube growth within it also potentially playing a role.

[Related: The Roman Britons cared a lot about hair removal, and it shows in artifacts.]

“The prevailing opinion was that hair whorl direction is controlled by a single gene, exhibiting Mendelian inheritance. However, our results demonstrate that hair whorl direction is influenced by the cumulative effects of multiple genes, suggesting a polygenic inheritance,” said Wang

According to Wang, previous studies hypothesized associations between hair whorl patterns and abnormal neurological development, but this study did not find any significant genetic associations between the direction of hair whorls and any observable neurological, behavioral, or cognitive. 

“Although we still know very little about why we look like we do, we are confident that curiosity will eventually drive us to the answers,” Wang concluded. 

The post The swirls and whorls of your hairline come from multiple genes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The planet’s first filter feeder could be this extinct marine reptile https://www.popsci.com/environment/filter-feeding-extinct-marine-reptile/ Tue, 08 Aug 2023 14:00:00 +0000 https://www.popsci.com/?p=561818
Reconstruction of Hupehsuchus about to engulf a shoal of shrimp. The ancient lizard widely opens its skinny snout and large mouth to swallow a large ball of shrimp.
Reconstruction of Hupehsuchus about to engulf a shoal of shrimp. Artwork by Shunyi Shu, Long Cheng, Wuhan Center of China Geological Survey

High competition for food means evolving unique feeding methods.

The post The planet’s first filter feeder could be this extinct marine reptile appeared first on Popular Science.

]]>
Reconstruction of Hupehsuchus about to engulf a shoal of shrimp. The ancient lizard widely opens its skinny snout and large mouth to swallow a large ball of shrimp.
Reconstruction of Hupehsuchus about to engulf a shoal of shrimp. Artwork by Shunyi Shu, Long Cheng, Wuhan Center of China Geological Survey

Baleen whales like humpbacks, northern and southern rights, and minkes are some of nature’s best known filter feeders. These mammals use the tough keratin baleen plates in their mouths to literally take in huge amounts of water and extract the small organisms like krill or plankton to snack on. However, an ancient reptile may have been the first animal to eat this way. 

[Related: This dolphin ancestor looked like a cross between Flipper and Moby Dick.]

A team of scientists from the United Kingdom and China found some remarkable new fossils that belong to a group of reptiles that were already using filter feeding about 250 million years ago. The findings are described in a study published August 7 in the journal BMC Ecology and Evolution.

Whales are not the only modern day animals to use filter feeding. Fish like basking sharks use their gills to take in food from water. Until now, there has been very little evidence from the fossil record that suggests ancient marine reptiles from the Mesozoic Era (about 252 to 66 million years ago) were filter feeders. 

In this study, the team found two new fossilized skulls that belong to an early marine reptile called Hupehsuchus nanchangensis. The roughly three foot long creature lived in China about 248 million years ago in the Early Triassic period. The high competition for food at this time may have caused H. nanchangensis to develop a specialized feeding system.

“This was a time of turmoil, only three million years after the huge end-Permian mass extinction which had wiped out most of life. It’s been amazing to discover how fast these large marine reptiles came on the scene and entirely changed marine ecosystems of the time,” study co-author and University of Bristol vertebrate paleontologist Michael Benton said in a statement

One of the specimens is well-preserved from head to clavicle (collarbone), and the other is a nearly complete skeleton. The team compared the shape and dimensions of the latter skull to 130 skulls from different aquatic animals, including 15 species of baleen whale, 52 species of toothed whale, 23 seal species, 14 crocodilians, 25 bird species, and the platypus. 

They found that Hupehsuchus skulls had soft structures such as an expanding throat region, which likely allowed the reptiles to take in huge amounts of water that had tiny shrimp-like prey, and baleen whale-like structures that filtered the food as it swam forward.  

[Related: Biologists vastly underestimated how much whales eat and poop.]

The Hupehsuchus skulls also have some grooves and notches located along the edge of its jaws that are similar to baleen whales. These present day mammals have keratin strips in their mouths instead of teeth like Odontoceti or toothed whales

The mostly complete fossilized skulls also had a long snout composed of unfused and straplike bones, as well as a long space between them and the length of the animal’s snout. This skull shape is only seen in baleen whales and is what allows them to eat krill. 

“We were amazed to discover these adaptations in such an early marine reptile,” study co-author and Wuhan Center of China Geological Survey paleontologist Zichen Fang said in a statement. “The hupehsuchians were a unique group in China, close relatives of the ichthyosaurs, and known for 50 years, but their mode of life was not fully understood.” 

Due to its rigid body, H. nanchangensis was likely a slow swimmer, and this lack of speed suggests that it may have filter fed similarly to today’s bowhead or right whales. These whales swim with their mouths wide open near the surface of the ocean to strain the food from the water. 

These new findings are an example of convergent evolution, a process where similar features evolved independently in different species.

The post The planet’s first filter feeder could be this extinct marine reptile appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Butterflies can remember specific flower foraging routes https://www.popsci.com/environment/heliconius-butterfly-spatial-learning/ Mon, 07 Aug 2023 17:00:00 +0000 https://www.popsci.com/?p=561635
A Heliconius butterfly with black, orange, and white on its wings.
A Heliconius butterfly. Priscila Moura

Studying enhanced cognitive abilities like spatial learning could help scientists better understand how ecology can shape evolution.

The post Butterflies can remember specific flower foraging routes appeared first on Popular Science.

]]>
A Heliconius butterfly with black, orange, and white on its wings.
A Heliconius butterfly. Priscila Moura

Spatial learning is an important and complex skill in the animal kingdom, as it helps animals find a meal when food sources are scarce. Insects such as bees and ants that are social and live in communal nests are known to do this, and now we know some butterflies can as well.  A study published August 7 in the journal Current Biology found that the Heliconius butterfly genus is capable of spatial learning. 

[Related: A ‘butterfly tree of life’ reveals the origins of these beautiful insects.]

According to the authors, the results provide the first known experimental evidence of long-range spatial learning for traplining in any butterfly or moth species. Heliconius or “passion vine” butterflies are tropical butterflies from South and Central America known for a variety of wing patterns. The beautiful creatures have evolved a novel foraging behavior amongst butterflies which includes feeding on pollen that utilizes large scale spatial information, according to the team. 

“Wild Heliconius appear to learn the location of reliable pollen sources and establish long-term traplines,” study co-author and University of Bristol evolutionary neurobiologist Stephen Montgomery said in a statement. “Traplines are learnt foraging routes along which food sources are repeatedly returned to over consecutive days, an efficient foraging strategy similar to the behavior of some orchid bees and bumblebees. However, the spatial learning abilities of Heliconius, or indeed any butterfly, had not yet been experimentally tested.”

In the study, the team conducted spatial learning experiments in Heliconius butterflies over three spatial scales that each represented ecologically-relevant behaviors.  

First, they tested the insect’s ability to learn the location of a food reward in a grid made up of 16 fake flowers. This test represented foraging within a single resource patch.  

Next, the team increased the spatial scale and tested if Heliconius could learn to associate food with either the left or right side of a two-armed maze, to represent multiple plants at a single place.  

Finally, they increased the distances and used a facility of outdoor cages called the Metatron in southern France to test if Heliconius can learn the location of good in a 196 foot wide maze shaped like the letter T. This set up represents foraging between places and is closer to the range Heliconius forages in in the wild. 

[Related: What busy bees’ brains can teach us about human evolution.]

The experiments that the Heliconius does show signs of spatial learning and can memorize the spatial location of their food sources. In future studies, the team plans to test if Heliconius are more proficient spatial learners than closely related species that don’t eat pollen. Understanding this would help reveal how enhanced cognitive abilities can be shaped by an animal’s ecology. 

The team also plans to uncover the unknown mechanisms by which Heliconius navigates. Panoramic views and other visual cues are believed to be important for these butterflies, but the insects may rely on other cues such as a sun or geomagnetic compass in addition to what they can see.  

 “It’s been almost a century since the publication of the first anecdotal story on the spatial capabilities of these butterflies,” study co-author and Universidade Federal do Rio Grande do Norte biologist Priscila Moura said in a statement. “Now we are able to provide actual evidence on their fascinating spatial learning. And this is just the beginning.”

The post Butterflies can remember specific flower foraging routes appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Trumpetfish use other fish as camouflage https://www.popsci.com/environment/trumpetfish-camouflage-stealth-coral-reef/ Mon, 07 Aug 2023 15:00:00 +0000 https://www.popsci.com/?p=561549
A long and skinny silver trumpetfish uses a colorful parrotfish as camouflage.
Shadowing behavior typically uses a non-threatening fish species as camouflage. Deposit Photos

Using a non-threatening species as a shield may be the best way for the reef fish to catch their next meal.

The post Trumpetfish use other fish as camouflage appeared first on Popular Science.

]]>
A long and skinny silver trumpetfish uses a colorful parrotfish as camouflage.
Shadowing behavior typically uses a non-threatening fish species as camouflage. Deposit Photos

Coral reefs are a bevy of biodiversity, supporting an estimated 25 percent of all known marine species. These reefs are home to many mutually beneficial relationships, but the animals that live there still have to eat. Scientists are learning more about the hunting tactics of some coral reef fish. 

[Related: Coral is reproducing in broad daylight.]

A study published August 7 in the journal Current Biology found the first known experimental evidence that trumpetfish conceal themselves by swimming closely behind another fish when it is hunting. This reduces the likelihood of being detected by its prey. 

This shadowing behavior typically uses a non-threatening fish species as camouflage, similar to how duck hunters will hide behind cardboard cut-outs of domesticated animals called “stalking horses” to approach ducks undetected. However, this strategy hasn’t been observed much in non-human animals.

“When a trumpetfish swims closely alongside another species of fish, it’s either hidden from its’ prey entirely, or seen but not recognised as a predator because the shape is different,” study co-author and University of Cambridge behavioral ecologist Sam Matchette said in a statement.

In the study, the team conducted field work in the Caribbean Sea near the coral reefs off the island of Curaçao. The team set up an underwater system to pull 3D-printed models of trumpetfish on nylon lines past colonies of damselfish, which are a common meal for the trumpetfish. They had to spend hours underwater perfectly still to conduct the experiment that they recorded using video cameras. 

“Doing manipulative experiments in the wild like this allows us to test the ecological relevance of these behaviors,” study co-author and University of Bristol behavioral biologist Andy Radford said in the statement.

[Related: Google is inviting citizen scientists to its underwater listening room.]

When the pseudo-trumpetfish moved past by itself, the damselfish swam up to inspect it and then rapidly fled back to their shelter in response to this potential threat from a predator.  When a model of an herbivorous and non-threatening parrotfish moved past alone, the damselfish inspected it and did not have as big a reaction. 

The team then used a trumpetfish model that was attached to the side of a parrotfish model as a way to replicate the shadowing behavior that the real trumpetfish use on the reef. The damselfish did not appear to detect the threat and responded the same way they did to the parrotfish model. 

Damselfish inspected the model trumpetfish – and rapidly fled from this predator to avoid being eaten. CREDIT: Sam Matchette.

“I was surprised that the damselfish had such a profoundly different response to the different fish; it was great to watch this happening in real time,” said Matchette.

The long thin trumpetfish uses a bigger, non-threatening species of fish, such as parrotfish, as camouflage to get closer to its dinner without being detected. CREDIT: Sam Matchette

Local divers were interviewed to see if this was happening out in the wild. The divers said they were more likely to observe shadowing behavior on degraded, less structurally complex reefs. Global warming from human-caused climate change, pollution, and overfishing are harming coral reefs around the world. In July, water temperatures off the coast of Florida reached a staggering 100 degrees Fahrenheit, prompting coral bleaching and efforts to preserve coral species in laboratories. 

“The shadowing behavior of the trumpetfish appears [to be] a useful strategy to improve its hunting success. We might see this behavior becoming more common in the future as fewer structures on the reef are available for them to hide behind,” co-author and University of Cambridge biologist James Herbert-Read said in a statement.

The post Trumpetfish use other fish as camouflage appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How do you keep a spacesuit clean? One answer is antimicrobial fabric. https://www.popsci.com/science/clean-spacesuit-antimicrobial-fabric/ Mon, 07 Aug 2023 10:00:00 +0000 https://www.popsci.com/?p=561323
Two astronauts walking in spacesuits in a desert
Analog astronauts Anika Mehlis, left, and Carmen Köhler, right, wear Mars-style spacesuits in Israel’s Negev Desert in 2021. Florian Voggeneder/OeWF

The quest to make space travel safer and less stinky.

The post How do you keep a spacesuit clean? One answer is antimicrobial fabric. appeared first on Popular Science.

]]>
Two astronauts walking in spacesuits in a desert
Analog astronauts Anika Mehlis, left, and Carmen Köhler, right, wear Mars-style spacesuits in Israel’s Negev Desert in 2021. Florian Voggeneder/OeWF

Sealed safely inside the International Space Station, astronauts dress for comfort and convenience. Their typical getups—short-sleeve collared shirts and long cargo pants—are regular Earth clothes, sourced from retailers that include Cabela’s and Lands’ End. But astronauts require exceptional attire when outside the ISS’s climate-controlled confines. NASA’s chunky spacesuits are, essentially, spacecraft condensed to human size. They protect wearers from an environment that swings from 250 degrees Fahrenheit in the sun to minus 250 degrees in the shade. 

Inside the suits, spacewalkers often work up a sweat, despite cooling tubes that wick away body heat. Extravehicular activities, or EVAs, may involve hours of strenuous labor. To stay warm and pressurized, astronauts also have to wear layers—including an inner form-fitting garment akin to long underwear—that they re-wear and even share. Complicating matters still: There are no laundry machines on the ISS. Because water is so valuable, washing a suit in orbit is not an option. Which is why NASA, the European Space Agency (ESA), and other organizations have asked textiles experts to investigate the problem of biocontamination in suits and develop fabrics that might solve it.

[Related: Future astronauts and space tourists could rock 3D printed ‘second skin’]

Heavy work in heavy gear leads to filth. After mock EVAs on Earth, technicians who help peel stand-in astronauts out of their suits have learned to turn their heads away on the first unzip to avoid a stinky blast, says Gernot Grömer, director of the Austrian Space Forum, a research group that conducts simulated astronautical missions. “Everybody sees those beautiful, shiny white spacesuits. But nobody knows what it smells like at the ISS.” (It’s not particularly pleasant.)

As these suits are used again and again, worries go beyond foul odors to hygiene and health hazards. The possibility for biocontamination, which includes human debris, bacteria, and other foreign substances, may get worse as spacefarers travel past low-Earth orbit for longer trips to the moon. 

“Washing spacesuit interiors on a consistent basis may well not be practical” in lunar habitats, ESA materials and processes engineer Malgorzata Holynska says in a statement. That space agency is investing in unusual ways to keep suits clean, such as antibiotic chemicals churned out by microbes.

Sanitary death metal

During NASA’s shuttle program, which ran from 1981 to 2011, spacesuits were designed to be used on two-week trips. But as astronauts began to live on the ISS for longer periods in the late 2000s, suit lifespans had to be extended up to six years. That meant microbes became a concern in ways they hadn’t before, says Evelyne Orndoff, a textiles engineer at the NASA Johnson Space Center. 

In NASA’s first comprehensive attempt to address spacesuit contamination more than a decade ago, Orndoff and her colleagues evaluated several off-the-shelf methods to kill germs on fabric, including Cupron and SilverClear. They cut treated textiles into two-inch squares, placed them in petri dishes, and grew several species of fungi and bacteria on the samples. 

Astronauts’ typical getups are regular Earth clothes, sourced from retailers that include Cabela’s and Lands’ End.

Some of the fabrics were infused with copper, which has impressive antimicrobial properties. When bacteria touch the element, it destabilizes their cell walls and membranes, making the microbes vulnerable to damage from the metal’s ions. The NASA scientists also examined textiles treated with silver—likewise toxic to germs on contact—and silicone.

After observing the gunk that grew on the fabrics for up to 14 days, they found that only one compound kept bacteria and fungi below targets set by NASA’s Constellation program—a now-defunct plan for lunar missions in which a spacesuit would have been reused up to 90 times in six months. The winner was a solution of silver molecules used for disinfecting hospital dressings and other fabrics. But the metal ion was too good at its job. “It kills everything,” Orndoff says. Total sterility can cause even more problems than grime, given than humans need a balanced ecosystem of millions of microorganisms to keep the skin and other organs healthy.

The experiments showed that concentrations of other antimicrobial compounds were generally too low to be effective. Some microbes would initially dip in numbers, but the resistant ones would repopulate the samples. The scientists worried that, at high-enough amounts, antimicrobial particles would irritate anyone wearing the fabric or pollute the space station. “After that we never really revisited antimicrobial treatments,” Orndoff explains, for the “simple reason” that it would present complications for the ISS life-support system that provides clean air and water. 

[Related: Onboard the ISS, nothing goes to waste—including sweat and pee]

While Orndoff’s team did not pursue their idea further, NASA’s commercial contractors have. In 2022, the agency hired US companies Axiom Space and Collins Aerospace to develop the next generation of suits for spacewalks. Earlier this year, Axiom unveiled a prototype suit that Artemis III astronauts might use to explore the lunar south pole. In a statement to Popular Science, the company says: “The Axiom Space AxEMU spacesuits will use textiles that have antimicrobial properties to reduce biocontamination.” The suits’ cooling system will also use biocide in its water loops “to prevent microbial buildup.” The company did not share the exact type of the agents, citing their proprietary nature.

Biological agents at work

Future astronauts might get a helping hygienic hand from the microscopic world. Partnering with the Vienna Textile Lab, and with funding from the ESA, Austrian Space Forum researchers have been studying how to turn a bacterial cell’s own defenses against it

Specifically, Grömer and his collaborators have been investigating biological compounds called secondary metabolites that microbes sweat out as a defense against other microorganisms. The researchers bonded several of these molecules to textiles and, over the past few years, subjected those samples to hundreds of tests, including zaps of radiation from a nuclear accelerator in Austria and baths in synthetic sweat. (The nasty liquid, which reminds Grömer of the acidic blood of the monsters in Alien, ages fabrics quickly.)

Fabric fibers under magnification. In greyscale.
A scanning electron microscope view of textiles tested by the Austrian Space Forum. OeWF

One metabolite in particular, named violacein, survived every hostile attack with its antimicrobial properties intact. The purple-black substance can be found in the bacteria that live on the skin of red-backed salamanders. It’s so good at killing microbes that some biologists suspect it protects the amphibians from deadly chytrid fungus infections. The Austrian Space Forum plans to field-test violacein in a simulated Mars mission, in which six astronaut roleplayers will spend four weeks in Armenia’s rugged mountains in 2024. 

Grömer envisions a future where this pigment’s potent defenses leave the planet, not only on treated spacesuits but also towels and other gear. While dirty linens might just sound like a chore, they can be a breeding ground for microbes, which thrive in low gravity and may mutate faster in space. “When you go to Mars, you’re at the edge of what’s technologically possible, so little nuisances can transform into real disaster-prone situations,” Grömer says. “And so if there’s a risk we can control, hell, let’s do it.”

The post How do you keep a spacesuit clean? One answer is antimicrobial fabric. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
This giant sea cow-like whale may have been the heaviest creature to ever live on Earth https://www.popsci.com/science/perucetus-colossus-heaviest-animal-whale/ Thu, 03 Aug 2023 15:00:00 +0000 https://www.popsci.com/?p=561033
An artist's rendition of the Perucetus colossus.
A whole new definition of thick. Alberto Gennari

Millions of years ago, the stubby-armed, 750,000-pound Perucetus colossus chilled out in the ocean shallows.

The post This giant sea cow-like whale may have been the heaviest creature to ever live on Earth appeared first on Popular Science.

]]>
An artist's rendition of the Perucetus colossus.
A whole new definition of thick. Alberto Gennari

It’s hard to deny that whales are some of the most charismatic megafauna on our planet. The blue whale, specifically, with its massive size, friendly demeanor, and devastating backstory is one that has captured imaginations for decades. But there may be a new contender for the largest animal to live on earth—or at least there was one around 40 million years ago.

An international team of scientists recently uncovered some giant bones in a fossil-filled coastal desert Peru, namely 13 vertebrae, four ribs and a hip bone. These fossils lead them to a discovery of a sea-dwelling mammal that would’ve weighed up to 340 metric tons. Blue whales have gotten to around 190 metric tons at their heaviest, and the most massive dinosaur, the supersized sauropod Argentinosaurus, was estimated to weigh around 76 tons

[Related: Millions of years ago, marine reptiles may have used Nevada as a birthing ground.]

Despite their incredible size, the newly-named Perucetus colossus was likely not a fighter, similar to some of the world’s other favorite sea mammals. 

“Because of its heavy skeleton and, most likely, its very voluminous body, this animal was certainly a slow swimmer. This appears to me, at this stage of our knowledge, as a kind of peaceful giant, a bit like a super-sized manatee. It must have been a very impressive animal, but maybe not so scary,” paleontologist Olivier Lambert of the Royal Belgian Institute of Natural Sciences in Brussels told Reuters. Lambert and his colleagues published their findings August 2 in Nature

The chilled-out attitude of the Perucetus was likely not the only thing they had in common with today’s manatees. Its dense, vast skeleton was even estimated to be twice as heavy as a blue whale’s at 5 to 8 tons, even though length-wise, the blue whale still had them beat. 

“It took several men to shift them [the fossils] into the middle of the floor in the museum for me to do some 3D scanning,” author Rebecca Bennion from the Royal Belgian Institute of Natural Sciences in Brussels told the BBC. “The team that drilled into the center of some of these vertebrae to work out the bone density—the bone was so dense, it broke the drill on the first attempt.”

This characteristic doesn’t exist in today’s cetaceans (the family including whales, dolphins and porpoises), but it does appear in sirenians. One author especially noted the Steller’s sea cow, which was discovered in the 1700s only to go extinct within three decades of its discovery due to overhunting. 

[Related: These now-extinct whales were kind of like manatees.]

Like manatees, the Perucetus also appears to have had front limbs. Strangely enough, the animal also possessed vestigial back limbs, a possible evolutionary hangover from when whales evolved from land-based, dog-sized mammals 50 million years ago. 

One looming question about the Perucetus is how it ate—the researchers unfortunately didn’t find it’s skull, so the authors have multiple hypotheses: it may have scavenged, ate sea grass, or even scooped up shellfish and worms from the mud floor like today’s gray whales. 

Nevertheless, just finding a creature that could’ve been this size opens a whole new can of worms for paleontologists to uncover. 

“The extreme skeletal mass of Perucetus suggests that evolution can generate organisms with characteristics that go beyond our imagination,” study author and Italian paleontologist Giovanni Bianucci told CNN. And that is a massive deal. 

The post This giant sea cow-like whale may have been the heaviest creature to ever live on Earth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Glowing dye lets us peek inside growing bones and teeth https://www.popsci.com/science/teeth-bones-growing-image/ Wed, 02 Aug 2023 18:30:00 +0000 https://www.popsci.com/?p=560795
Fluorescent dye shows the growth of teeth and bones.
A new tool tracks hard tissue growth like teeth and bones in many species. Gonzalez Lopez et al. Sci. Adv. 2023

For the first time, biologists have precisely tracked the development of hard biological structures.

The post Glowing dye lets us peek inside growing bones and teeth appeared first on Popular Science.

]]>
Fluorescent dye shows the growth of teeth and bones.
A new tool tracks hard tissue growth like teeth and bones in many species. Gonzalez Lopez et al. Sci. Adv. 2023

Your body contains the stuff of rocks: the calcium-based minerals in bones and teeth. In a process called biomineralization, you produce these materials that harden and stiffen as they grow. So do the bodies of other bony, toothed animals. It’s in shells, too: Iridescent mother-of-pearl forms via biomineralization.

But, historically, biologists struggled to observe how this process worked. Now, scientists have been able to observe it in vivid 3D. Bones and tEEth Spatio-Temporal growth monitoring (BEE-ST), as its creators have named their technique, involves adding dye to nascent bones or budding teeth, then watching the color spread as their host components grow.

BEE-ST’s creators published their work in the journal Science Advances today. If its authors are correct, then this work could be a boon for people who aren’t just studying how bones and teeth grow, but people who want to control that growth themselves.

“Currently, there are no available tools for precise monitoring and measuring the pace of tooth growth in space and time,” says Jan Křivánek, a developmental biologist at Masaryk University in Brno, Czechia, and one of the paper’s authors. BEE-ST, they hope, may change that.

[Related: This new synthetic tooth enamel is even harder than the real thing]

A few methods can accomplish parts of that goal. Today, scientists and medics can rely on a technique called micro-computed tomography, in which they scan an object with X-rays from multiple angles, then stitch the scans together into a 3D image. While this does give observers a 3D perspective, it also only gives a snapshot—moments in time, rather than a coherent sequence of development.

Another potential option is dye. Bone-watchers have known for decades that dye and substances like it can bind with the calcium in these organs. But this is far from a perfect option to watch how calcium-based structures grow. For one, to see into a bone, you typically have to remove the calcium from your sample, which removes the dye. You can get around this by taking a slice of the tooth or bone, but that only gives you a 2D shadow of the larger 3D picture.

Křivánek and his colleagues wanted to see how mouse teeth grew, but they also wanted a more sophisticated way of seeing calcium. So, they decided to adapt the dye method. Fortunately, in the last several years, researchers had developed techniques to see into a tooth without removing the calcium. They could insert dye into a growing tooth or bone and take 3D images of it over time. Every few days, the researchers added batches of new dye to lab mice. The result, when the scientists later placed the teeth under a microscope, was a sequence of stripes: each one marking a different injection.

[Related: We finally know why we grow wisdom teeth as adults]

In the process, they realized that their technique could be used for more than just mouse teeth. They next showed it could work in a mouse’s bones. Then they expanded from mice to representatives of other provinces in the animal kingdom, administering dye to a menagerie of vertebrates: chameleons (reptiles), junglefowl (birds), frogs (amphibians), and zebrafish (fish).

All of this took Křivánek and colleagues several years, but in the end, they think they have created a reliable process for watching how teeth and bones grow. But that doesn’t mean it only serves this purpose. “We strongly believe it will be further tuned for other applications,” Křivánek says.

One of them is a field called tissue engineering, the science and craft of manipulating the tissues of the human body. A “tissue” can be anything from skin to muscle to internal organs—to stronger materials like the hard, tough matter found in bone and tissue. With tools such as stem cells, scientists can strengthen tissue, improve it, or even try to replicate it from scratch. This technology can help heal cracked bones or regenerate missing teeth.

But, in order to engineer anything, would-be bonesmiths first need to understand how their materials behave as they grow. That, Křivánek thinks, is where something like their method could enter the picture. “We basically opened doors,” he says. “Let’s see how the scientific community will use it.”

The post Glowing dye lets us peek inside growing bones and teeth appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How male tobacco budworm moths found their perfect cologne https://www.popsci.com/environment/male-moth-aphrodisiac/ Wed, 02 Aug 2023 14:00:00 +0000 https://www.popsci.com/?p=560547
A moth called a tobacco budworm on a green leaf. Moths like the tobacco budworm use pheromone signaling to find mates.
Moths like the tobacco budworm use pheromone signaling to find mates. Kai Squires

The pollinators use a specific blend of pheromones during courtship to increase mating success.

The post How male tobacco budworm moths found their perfect cologne appeared first on Popular Science.

]]>
A moth called a tobacco budworm on a green leaf. Moths like the tobacco budworm use pheromone signaling to find mates.
Moths like the tobacco budworm use pheromone signaling to find mates. Kai Squires

Many plants and animals will do whatever it takes to reproduce, from “wingmen” dolphins to pee sniffing giraffes to daisies that trick flies into pollinating with them. Now, a team of scientists have identified a specific blend of pheromone chemicals and a newly unveiled aphrodisiac that male moths use during courtship. The findings were published on August 1 in the journal Current Biology and are showing more detail on this complex blend of chemicals that are used in the short-range communications between male and female moths.

[Related: Does ‘vabbing’ work? The truth about vaginal pheromones.]

The male pheromone mixture used in mating was first discovered almost 35 years ago, but the male moth aphrodisiac found in this study is a chemical called methyl salicylate. It is derived from plants and is emitted when herbivores move in to attacks and eat them. Methyl salicylate acts as both a healing mechanism in the plants and as a cry for help to the enemies of the herbivores eating the plants, to alert them that there is potential food nearby. 

The moth family in this study feeds on roughly 350 plant species across North and South America, including the tobacco budworm, the corn earworm, and the fall armyworm. Male Chloridea virescens moths–also called the tobacco budworm moth–use methyl salicylate in their pheromone blend that the team on this study say likely helps the male show dominance. Basically, this natural perfume is proof that the moth was able to defeat the plant’s defenses and could be considered a way of signaling that it is a worthy mating option. 

“These close-range interactions provide valuable insight into both species recognition— how females recognize males of the same species—and female choice in mate selection,” study co-author and North Carolina State University entomologist Coby Schal said in a statement. “This interaction gives females some insight into a particular male’s history.”

The female moths will begin the mating process by emitting an attraction pheromone blend made up of fatty acids over a longer range of distance and the males respond to these cues by flying closer to the females. Once they’re close enough, the males emit their own unique blend of pheromones made up of different alcohols. The females then use the male’s blend to help them decide whether the male is partner material. 

In the study, the team used a method where chemical compounds are separated in a controllable oven called gas chromatography, to determine the chemicals that make up the male pheromone blend. Some of these ingredients were not found in the initial characterization first made by scientists over three decades ago. 

[Related: The alluring tail of the Luna moth is surprisingly useless for finding a mate.]

They discovered that the methyl salicylate elicited a huge response from the females in the lab, notably because the female moth antennae have two smell receptors specifically for picking up this chemical. 

The team was also able to reduce the amount of methyl salicylate the males emitted and saw that mating success suffered. When these males then received smaller quantities of methyl salicylate, their mating success rates returned to normal, demonstrating how the chemical works more like an aphrodisiac.

Additionally, the team found small amounts of methyl salicylate in moths that had been eating an artificial diet in the lab, but those caught in North Carolina soybean fields had large amounts of the chemical. The chemical was stored in their hairpencils, male organs that emit their special mating pheromone blend. Adding the chemical into the diet of male moths in the lab through a sugar water drink that mimicked nectar demonstrated how male moths incorporated the chemical and sequestered it in their hairpencils. When they were encouraged to vigorously court females, those hairpencils had lower amounts of methyl salicylate since the males used a lot of it in their pheromone cocktail.

“It was surprising to find methyl salicylate in male moth pheromone blends, but the evidence from this paper suggests that male moths take up and sequester methyl salicylate as larvae while chewing up plants or as adults by drinking flower nectar,” Schal said. “Males may have evolved sexual signals that match the sensory bias exhibited by females in responding to methyl salicylate.”

The post How male tobacco budworm moths found their perfect cologne appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Jellyfish may have been roaming the seas for at least 500 million years https://www.popsci.com/environment/500-million-year-old-jellyfish/ Wed, 02 Aug 2023 13:00:00 +0000 https://www.popsci.com/?p=560307
Artistic reconstruction of a group of Burgessomedusa phasmiformis swimming in the Cambrian sea.
Artistic reconstruction of a group of Burgessomedusa phasmiformis swimming in the Cambrian sea. Christian McCall

The extinct Burgessomedusa phasmiformis evolved to swim hundreds of millions of years before dinosaurs existed, a new study suggests.

The post Jellyfish may have been roaming the seas for at least 500 million years appeared first on Popular Science.

]]>
Artistic reconstruction of a group of Burgessomedusa phasmiformis swimming in the Cambrian sea.
Artistic reconstruction of a group of Burgessomedusa phasmiformis swimming in the Cambrian sea. Christian McCall

Despite lacking blood, a heart, or a brain, slimy jellyfish are one of Earth’s most ubiquitous sea creatures and various species live in all of the planet’s oceans. They are some of the Earth’s oldest animals, having been around for roughly more than 500 million years (that’s 250 million years older than the earliest dinosaurs). Now, scientists with Toronto’s Royal Ontario Museum have found the oldest swimming jellyfish in the fossil record. The discovery of the newly named Burgessomedusa phasmiformis is described in a study published August 1 in the journal Proceedings of the Royal Society B.

[Related: These jellyfish seem to cheat death. What’s their secret?]

Jellyfish belong to a clade of animals called medusozoans, which includes the box jellies, hydroids, stalked jellyfish, and true jellyfish that swim in the oceans today. Medusozoans are part of the group Cnidaria, which also includes sea anemones and corals. The discovery of Burgessomedusa shows that large, swimming jellyfish that are bell or saucer-shaped had already evolved over 500 million years ago.  

Jellyfish are made of roughly 95 percent water, making them tricky to capture in the fossil record. However, the Burgessomedusa fossils are exceptionally well preserved in the Burgess Shale in the Canadian Rockies.  The Royal Ontario Museum now holds close to 200 specimens that were used to learn more about the internal anatomy and tentacles of ancient jellyfish, with some specimens measuring more than seven inches long. Like some modern jellyfish, Burgessomedusa would also have been capable of free-swimming. Their tentacles would have helped it catch pretty big prey.

Field images of Burgessomedusa phasmiformis jellyfish specimens (middle right ROMIP 65789 – see close up images) and of the top arthropod predator Anomalocaris canadensis preserved on the same rock surface. Hammer for scale. CREDIT: Photo by Desmond Collins/Royal Ontario Museum
Field images of Burgessomedusa phasmiformis jellyfish specimens (middle right ROMIP 65789 – see close up images) and of the top arthropod predator Anomalocaris canadensis preserved on the same rock surface. Hammer for scale. CREDIT: Photo by Desmond Collins/ Royal Ontario Museum

“Although jellyfish and their relatives are thought to be one of the earliest animal groups to have evolved, they have been remarkably hard to pin down in the Cambrian fossil record. This discovery leaves no doubt they were swimming about at that time,” study co-author and University of Toronto PhD candidate Joe Moysiuk said in a statement

This study uses fossil specimens that were discovered at the Burgess Shale during the late 1980s and 1990s. The fossils demonstrate that the Cambrian food chain was much more complex than paleontologists previously believed, and the large swimming arthropods of the time like Anomalocaris were not the only predators. 

[Related: Italian chefs are cooking up a solution to booming jellyfish populations.]

One of the more gnarly parts of the complex life cycle of Cnidarians is that they can have more than one body form. A vase-shaped and non-free swimming body is called a polyp, while medusozoans have a bell or saucer-shaped body–called a medusa or jellyfish–that can be free-swimming or not. Fossilized polyps have been found in about 560-million-year old rocks, but the origin of the more free-swimming medusa or jellyfish is not well understood. Their evolutionary history is primarily based on microscopic fossilized larval stages and molecular studies performed on living species. 

“Finding such incredibly delicate animals preserved in rock layers on top of these mountains is such a wondrous discovery. Burgessomedusa adds to the complexity of Cambrian foodwebs, and like Anomalocaris which lived in the same environment, these jellyfish were efficient swimming predators,” study co-author and Royal Ontario Museum’s invertebrate paleontology curator Jean-Bernard Caron said in a statement. “This adds yet another remarkable lineage of animals that the Burgess Shale has preserved chronicling the evolution of life on Earth.”

The post Jellyfish may have been roaming the seas for at least 500 million years appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
How DNA evidence could help put the Long Island serial killer behind bars https://www.popsci.com/science/dna-evidence-long-island-serial-killer/ Wed, 02 Aug 2023 10:00:00 +0000 https://www.popsci.com/?p=560445
A gloved hand holds police tape in a crime scene investigation.
Just 50 to 100 cells may contain enough genetic material to generate a DNA profile. Depositphotos

Forensic scientists scour cells and hair strands to identify telltale patterns in genes.

The post How DNA evidence could help put the Long Island serial killer behind bars appeared first on Popular Science.

]]>
A gloved hand holds police tape in a crime scene investigation.
Just 50 to 100 cells may contain enough genetic material to generate a DNA profile. Depositphotos

What does it take to convict a serial killer? Evidence that leads to the perpetrator might include clues from bodies, eyewitness accounts, or fingerprints on weapons. Yet the complexity of these cases often requires investigators to look deeper—to genetic material naked to the human eye. 

DNA evidence can bring resolution to cold cases. Until mid-July of this year, there were no active leads for the Long Island Serial Killer, thought to be responsible for the deaths of victims found at Gilgo Beach, New York, between 1996 and 2011. But new DNA evidence gave police the proof they needed to arrest New York architect Rex Heuermann for the murder of three women whose corpses were found on the beach a decade ago and a possible lead on a fourth body. Heuermann, who through a lawyer pleaded not guilty in July, appeared in court yesterday.

While each criminal case is different, when it comes to catching a murderer, DNA is the gold standard (but not infallible). For Heuermann, DNA from a discarded pizza crust and strands of his wife’s hair linked him to the crimes. “In the case of Rex Heuermann, there is already more than enough evidence,” says Carole Lieberman, a forensic psychiatrist and expert witness. “There doesn’t have to be an actual witness to his crimes.”

As DNA technology advances, police can catch killers more quickly—and, possibly, find answers to the nearly 15,000 cold cases in the US.

Suspects from a sliver of DNA

You share about 99.9 percent of your DNA with everyone else in the world. To get around that problem, forensic experts have to focus on an extremely tiny portion of non-identical DNA, called short tandem repeats (STR). These are two to five base pairs of repeated multiple types in a single chromosome, explains Lawrence Kobilinsky, a professor emeritus of forensic science at John Jay College of Criminal Justice. STRs make up 3 percent of the entire human genome.

STRs have a high mutation rate, meaning this area varies widely from person to person. If two samples have the same pattern of base pairs, it’s a strong indicator that the DNA belongs to the one individual. “As long as you have the quantity and quality of evidence, those nuclear DNA tests come up with tremendous information for human identification,” Koblinsky says.

Quality matters

In Heuermann’s case, police found traces of hair on three of the victims. Some STR analyses found the hairs belonged to a female while another hair strand found on the tape used to tie up one victim, Megan Waterman, came from a male, but investigators could not gather any more information. Most of it was practically unusable. This isn’t surprising; after 13 years of exposure to the elements, environmental factors such as humidity, temperature, and contamination from bacteria or fungi likely decomposed the DNA. 

[Related: DNA evidence could soon tell cops your age, whether you smoke, and what you ate for breakfast]

Just a bit of intact genetic material, though, goes a long way. If you have about 100 picograms of DNA—roughly 50 to 100 cells—Koblinsky says that it is enough to get an STR profile. “Less than that, you’re only going to be able to do mitochondrial DNA [testing].” 

Mitochondrial DNA makes up a small fraction of the total amount of DNA in a cell—16,500 base pairs out of the 3 billion in DNA. But it is more robust than other types of cellular DNA, allowing it to withstand environmental conditions that would normally contaminate other genetic material. A centimeter of hair contains enough to generate a mitochondrial DNA profile. This allowed New York City police to obtain DNA from the leftover pizza that Heuermann threw out. Police took the trash back to the lab, where it was swabbed for mitochondrial and autosomal DNA, genetic material inherited by both parents. 

Mitochondrial DNA’s shortcomings

Mitochondrial DNA is less reliable than the STRs, though, because people inherit their mitochondria from their mothers. “A woman and her mother, grandmother, aunt, niece, or granddaughter will all have the same mitochondrial DNA profile,” says Koblinsky. “Even a person’s brother or sister will have the same mitochondrial profile.” 

Since mitochondrial DNA cannot provide a 100 percent match to the perpetrator, prosecutors need to present some type of statistic on the likelihood the DNA from a crime scene is the same as the defendant. They might explain the chances of being wrong as one in a quadrillion or one in a thousand, for example. 

[Related: DNA evidence is not foolproof]

The more mitochondrial DNA from different sources, the better. Police took evidence from each crime scene and the pizza crust, and they also sampled 11 bottles in a garbage bag Heuermann left outside his home. When swabbed and tested for mitochondrial DNA, the results resembled the DNA profile of his wife and were similar to the female hairs found in burlap sacks used to wrap the bodies. This is not a big surprise, says Koblinsky, because people tend to shed between 50 to 100 hairs a day. “It’s not unusual for hair to stick to your clothing. Possibly his wife’s hair got transferred to him and then those burlap bags where he bound the victims.” 

Better sensitivity and accuracy

Advances in DNA technology are making it easier to identify and convict murderers who could strike again. Mitochondrial tests have higher sensitivity and specificity than 10 years ago, Koblinsky explains. Next-generation sequencing (NGS)—a tool for detecting the order of DNA base pairs—has improved, creating quicker and more accurate DNA profiles from genetic evidence collected from crime scenes. A new NGS method using CRISPR-CAS9, for example, was able to identify 0.1 percent of a genome sample in a DNA mixture containing other unrelated material. According to the National Institute of Justice, this technique “outperformed other NGS methods” and was able to identify 2,500 variants with an 83 percent accuracy.

AI technology is also making it easier to examine low-quality DNA samples, sift through DNA sequences on felon databases, and check for crimes committed in other states. As police dig more into Heuermann’s past, the public will learn whether the alleged Long Island Serial Killer took a decade-long hiatus, or if there are more bodies waiting to be uncovered.

Multiple lines of evidence are needed to build a case against a serial killer, as Lieberman points out. Having witnesses and establishing patterns of behavior can narrow the search for a murderer, but DNA could be the turning point between circumstantial evidence and an open-and-shut case.

The post How DNA evidence could help put the Long Island serial killer behind bars appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Museums are filled with fake dinosaur fossils. See what it takes to make those replicas. https://www.popsci.com/science/dinosaur-fossil-replicas/ Tue, 01 Aug 2023 13:00:00 +0000 https://www.popsci.com/?p=560044
large dinosaur skull sits in storage area
A replica of a Teratophoneus skull sits in storage at Gaston Design in Fruita, Colorado. Theo Stroomer for Popular Science

Off a rural road in Colorado, a studio transforms dusty skeletons into dinosaurs beyond our imagination.

The post Museums are filled with fake dinosaur fossils. See what it takes to make those replicas. appeared first on Popular Science.

]]>
large dinosaur skull sits in storage area
A replica of a Teratophoneus skull sits in storage at Gaston Design in Fruita, Colorado. Theo Stroomer for Popular Science

THERE ARE BONES EVERYWHERE. Black- and purple-painted models of the horn-faced carnivore Ceratosaurus nasicornis lie arranged by anatomical element in boxes. The cranium of a crocodile-like creature called a phytosaur rests on a worktable. Skeletons of dinosaurs, prehistoric mammals, and other wonders are stacked floor to ceiling in a storeroom. Past it, a Utahraptor ostrommaysi stands midkick, and the massive skull of the three-horned dinosaur Torosaurus waits to be fitted on a body. An artist grinds away at the head of the massive armored fish Dunkleosteus, sanding down its seams.

None of the bones scattered in plain view have been excavated from the ground. They’re resin likenesses that lead many a visitor to wonder aloud, “Are those fakes?” when exploring halls of strange and posed prehistoric skeletons. The answer is usually more complicated than viewers realize—and this busy fossil reconstruction studio in Fruita, Colorado, illustrates that perfectly.

Most people think of museums as hallowed strongholds of authentic dinosaur specimens. Each towering Tyrannosaurus or stupendous sauropod embodies life, death, extinction, survival, and, thanks to Hollywood, the enduring quest of sunburned explorers searching distant deserts. A replica doesn’t deliver that same gut punch of wonder. But that has more to do with our own misconceptions than it does with scientific reality.

artist poses with fossil replicas and parts in storage area
Robert Gaston has focused his craft on paleontology replicas and mounts, including the Diabloceratops seen at left, for almost 30 years. Theo Stroomer for Popular Science

Consider Sue the T. rex, arguably the most famous fossil dinosaur in the world. Standing in its own exhibit in Chicago’s Field Museum, Sue represents at least 80 percent of a full skeleton, making it the most complete specimen ever found of a “tyrant lizard king.” But paleontologists had to fill in the missing pieces with casts of other T. rex specimens they dug up. Sue’s real skull sits in a separate case on the floor, making it look as if the fossil was somehow in a car wreck. The piece is crushed and distorted from about 67 million years of sitting under layers of heavy sandstone. The pristine, grinning head seen on display is a scientifically informed artist’s impression of what the living animal looked like.

Fossil curators often stress the difference between casts and the originals, emphasizing the importance of making copies for display. The Field Museum, Australia’s Museums Victoria, and England’s Oxford University Museum of Natural History all try to get ahead of the “Is it real?” question on their websites. In 2018, London’s Natural History Museum sent its iconic cast of Diplodocus, “Dippy,” on tour, leading some commenters to surmise with shock that the renowned dinosaur had always been a fraud. “Let’s face it,” one Huffington Post commenter sneered, “Dippy isn’t even a dinosaur. She’s a fake.” And it’s not just Dippy—another take from a paleontology educator on reconstructed dinosaurs conceded that “even the best fossil casts are going to lack a certain something that the original fossils have,” though the article failed to dig into what that je ne sais quoi might be. Kids seem to be especially hung up on whether a bone was once part of a real animal or not. In a 2018 study in the International Journal of Science Education, Part B, one child told surveyors that dinosaur casts were “not as special” as original fossils “’cause, eh, you just know that it’s…a piece of plastic or something.’”

That same kid would probably find most genuine skeletons a letdown. Paleontologists occasionally uncover a dinosaur from volcanic ash and other sediments with every bone preserved perfectly in place, but most fossil animals are unearthed incomplete or damaged. If excavators simply freed them from their encasing rock and put them on display, museum patrons would be left scratching their heads over jumbles of weathered, flattened, and broken bones. 

cleaning dinosaur part replica
After replicas are molded, seam chasing is one of the early steps in removing excess material to make them look more convincing. Theo Stroomer for Popular Science

Casts and replicas bring flawed skeletons closer to what they looked like in real life. So they’re just as important to paleontologists as to they are the public. Reconstruction expert Rob Gaston notes that most of the specimens he receives at his workshop, which he opened 27 years ago with his partner Jennifer Schellenbach, would not be presentable without artistic intervention. The scraps are a far cry from the majestic creatures so many museum visitors hope to see. Liberating fossils from rock is only the first step in bringing a long-extinct animal back to something resembling life.

“Really, the process is twofold,” the artist says as the team at Gaston Design bustles around the maze of tables and cabinets. “The first thing we do is obtain pieces from the museum. Those are usually incomplete, broken, distorted.” It’s like receiving a hand-me-down puzzle with only half the pieces in the box—many of them in sorry shape. 

The process doesn’t end with casting and correcting the original material. Whether a dinosaur is standing stock-still or running with jaws agape towards visitors, each reconstruction needs a metal armature that sits inside like a second skeleton. What’s more, the mounts have to be sanded down to remove seams, painted to look like the original rock, and assembled into their full forms before they leave the shop. The result is always something you can envision wrapped in muscle, scaly skin, and feathers.

replica dinosaur bones treated with paint to make them appear old
Next, the molded bones are scraped, painted with spray paint, and then given a separate “dirt” wash for an aged appearance. Theo Stroomer for Popular Science

THE SCIENTIFIC COMMUNITY hasn’t always had artists like Gaston on hand to fix and fit together those jumbled puzzle pieces. The way paleontologists reconstructed fossil skeletons through much of the 20th century is a perfect example of how even real bones can warp reality. In the bright halls of the American Museum of Natural History in New York City, for example, the iconic Triceratops that’s been tilting its horns at visitors since 1923 is a composite of several different individuals of roughly the same size. Likewise, most bones found in the Ice Age asphalt seeps of Los Angeles’ La Brea Tar Pits turn up jumbled. The chocolate-colored skeletons standing in the site’s museum have been pieced together from parts that don’t always fit. If a skeleton is reconstructed from the bones of several animals that lived in different geographic localities, and perhaps even disparate slices of time, should it count as real? 

Attempts to reconstruct what paleontologists uncover from Earth’s geologic record are about as old as the field itself. English paleontologist Richard Owen once mused that plaster copies of fossils might stoke wonder in museum visitors. In 1868, the English artist Benjamin Waterhouse Hawkins worked with Edward Drinker Cope and Philadelphia naturalist Joseph Leidy to create a complete reconstruction of Hadrosaurus foulkii, a herbivorous dinosaur that had been uncovered in the marl pits of southern New Jersey. The real bones were fragile and represented only a portion of the animal’s body, so the team made casts of what they had and sculpted the rest, creating the one and only mounted nonavian dinosaur at the time. The skeleton was a huge hit, perhaps inspiring the next generation of paleontologists to create additional reconstructions.

person builds large dinosaur model in workshop
Lindsay Goro assembles a Ceratosaurus model at Gaston Design. The original skeleton was found right in Fruita. Theo Stroomer for Popular Science

The popularity of more finished-looking fossils generated new questions—and problems—for museums. Creating and assembling casts was a laborious process, and the impression that visitors craved original bones led some institutions to put remains back together with materials like Bondo, an irreversible filler used on automotive and home projects, and to drill through specimens so they could be slotted onto permanent armatures. In time, paleontologists began to favor casts as replacements or complements, even as some in the scientific community saw reconstructions as second-rate.

“I think calling them ‘fakes’ or regarding them as inauthentic doesn’t appreciate how much preparation, construction, and modeling goes into making real fossils into objects that are usable for scientific research or display,” says Chris Manias, a paleontology historian at King’s College London. Instead, casts and reconstructions exist along a continuum, he notes, filling in the gaps on mounts when needed, or standing in for missing fossils entirely. 

Manias also disagrees that these thoughtful imitations reduce the wonder inspired by prehistoric creatures. “Casts and reproductions have always remained highly important,” he says, a fact underscored by recent exhibits of a long-necked herbivore called Patagotitan mayorum at several large museums in the US and England. This dinosaur, made of casts from multiple incomplete skeletons, stretches to more than 100 feet long, making it among the largest prehistoric reptiles described by paleontologists. At such stupendous size, awe erases any quibbles about authenticity.

replica head of large, ancient fish sits on workshop table
The enormous fish Dunkleosteus lived during the Late Devonian period. You can see its overlapping armored plates in this replica. Theo Stroomer for Popular Science

AT THE FRUITA STUDIO, Gaston and his crew of artists excel at blending fact and speculation. While Gaston has done some repair work on original fossils, particularly for commercial dealers, he spends most of his time visualizing what fossils looked like when they were still fresh and unscathed, filling in missing skeletal parts to create exhibit-worthy animals for universities and museums. 

Everything starts at the casting station, which sits just a few steps inside the workshop door. Copying specimens can be a precarious process given the fragility of most fossil bone. The key is silicone. Placed within a cushioning cradle—with special armatures made for skulls or other large pieces—the fossil is doused in a cloudy, slimelike liquid polymer that is then left to cure. Gaston and his colleagues peel the soft shell away once it’s dry, creating a mold. “Your piece comes out, hopefully without damage,” Gaston says, or at least nothing that can’t be easily repaired. Chips and cracks aren’t unusual. Such a risk might surprise members of the public, but specimens face similar threats at every stage from excavation to display. Experts often break fossils in the field, the lab, and museums. Scientists and preparation specialists have devised all sorts of adhesives and strategies to extend the afterlife of ancient bone, including an entire line of fossil-ready superglues called PaleoBond.

Gaston estimates that most of the skeletons he works on require between 100 and 150 distinct molds, which are stored in an on-site warehouse. The resin casts created from those molds are just the beginning of the reconstruction process. The phytosaur skull sitting on Gaston’s workbench is part of one such project: a beautifully complete cranium of a crocodile-like reptile with sharp teeth about as big around as a human thumb, discovered by paleontologists from the St. George Dinosaur Discovery Site museum in Utah. Sometime after the animal’s death about 220 million years ago, something smashed the skull. “As you can see, it’s really, really distorted on one side,” Gaston notes, “so while this is a nice, fairly complete skull, it’s going to need extensive work.” He created a replica from the phytosaur’s mold that he can cut apart, sculpt, and otherwise fix to look like natural, symmetrical bone and not a Triassic pancake. 

pouring thick liquid into mold
A staff member pours a fossil mold using a polyurethane resin combined with filler material. Theo Stroomer for Popular Science

Restoring an animal that lived thousands, millions, or tens of millions of years ago is a huge challenge. There are usually no fresh skeletons to compare the reconstructions to for accuracy. Unless paleontologists find a complete, undistorted head, it can be challenging to tell a species’ actual proportions—how far the back of the skull flared out, or the exact position of the nasal openings. The large Torosaurus lying on the workshop floor, for instance, came from a young creature whose bones had not yet fully fused. The skull was in fragments when Gaston began working on it, a three-dimensional puzzle put together according to the anatomy of more mature horned dinosaur specimens. Closely related species can have the same individual bones in their skulls, but with slight variations, and can provide a basic guide to what should fit where. The goal, Gaston says, is to do as little as possible and not over-sculpt such reconstructions. A touch of asymmetry in an otherwise beautiful fossil is better than perfection, which can look unnatural.

At every step of his weekslong process, Gaston keeps museum visitors in mind. “The conundrum you get in is you want to present a cast as close as it can be of what was found, but if it’s a public display piece, you want it to be anatomically something [people] can understand and relate to,” he says. It’s a difficult balancing act, trying to fairly represent the animal while still retaining the texture, color, and overall shape of the fossil. “It’s kind of like refinishing an antique, where you might fix broken parts but you don’t strip the finish off and rebuild,” Gaston explains. 

person works on fossil replica of large head with horns
Elisa Uribe de Gaston works on detailing a replica Bison latifrons skull, the largest bovid ever to live in North America. Theo Stroomer for Popular Science

Still, the inference and guesswork involved is often invisible to the public—and even to artists who base their illustrations on fossil reconstructions. While working on a relatively new dinosaur from Utah, Nasutoceratops titusi, Gaston had to contend with the fact that the dinosaur’s skull was crushed and the horns were bent down, almost like a longhorn cattle’s. He decided against cutting the cast apart and rearranging the horns, leaving them relatively flat instead of angled up. Some decisions have more to do with design or reconstruction capabilities than anatomical certainty. But artistic re-creations of Nasutoceratops have perpetuated the image and even exaggerated it, like a game of telephone stretching back millions of years.

Sometimes renderings can be corrected when new evidence turns up. Take Apatosaurus, which sported a deep and boxy head with spoonlike teeth until paleontologists unveiled the real thing in 1978: a wedge-shaped skull with short, pencillike teeth. In these cases, regular dinosaur nerds might think paleontologists are simply making things up. The cachet of authenticity creates a great deal of tension in planning what to present to the public.

“The main argument you hear is, ‘The public doesn’t want to see casts, they want to see real things,’” Gaston says. The primary counterpoint is that reconstructing and mounting original fossils can damage the bones in the process. But, Gaston also notes, most of the time the original fossils aren’t even fit to display. “Seventy to 75 percent of the material I deal with may be almost a complete skeleton, but it’s all so badly distorted or mashed that it’s not mountable.” Casting—both for reconstruction and for repairs—allows dinosaur and other paleontological exhibits to better show what was once inside living creatures. 

A FEW OF GASTON’S re-creations sit in Dinosaur Journey across town. Without casts, “there would be a lot more labels, a lot more signage trying to translate the fossil record,” says Julia McHugh, a curator at the museum. It would require a lot more patience from visitors, perhaps more than they would be willing to give, to explain the identity and orientation of original fossils. Instead, McHugh and other curators have often favored placing the original fossils next to reconstructions. “Then you can say, OK this is what the fossil looks like coming out of the ground; this is what the fossil would look like in life,” she explains. 

binder with bone anatomy information sits is placed on fossil parts next to large fossil head
The artists use a paleontological guide to the osteology of Ceratosaurus to reassemble the fossil. Theo Stroomer for Popular Science

Over time, paleontologists have gotten better at collecting, constructing, and displaying natural specimens. Some of the grand skeletons in the Smithsonian National Museum of Natural History’s recently renovated Deep Time exhibit are made from original bone. But such undertakings have their own constraints. “It’s expensive; it takes a lot of time; it’s very heavy; and those things do not move,” McHugh says. That means a fossil skeleton of Diplodocus or Tyrannosaurus will have to stand in one spot for years, if not decades, rather than being part of a more modular museum that can change as the science does. A cast, she notes, can come apart in minutes—an advantage that facilities rely on to update their displays or even put on traveling exhibits.  

Downstairs from McHugh’s office at Dinosaur Journey, a Ceratosaurus the length of a large SUV stands posed like a cat about to jump on a windowsill. It’s the finished version of the cast in Gaston’s shop. The Jurassic carnivore’s back legs are flexed, and its long tail makes a sinuous S. Its resin jaws remain half open to let the exhibit lights gleam off dozens of re-created teeth. The replica was created using bits of fossil, resting in a nearby glass case, that were picked apart by looters in the nearby Fruita Paleo Area before paleontologists got to them. Its original skull was also flattened, with both sides of the upper jaw wrenched out of alignment. Casts of other Ceratosaurus bones helped fill in the missing parts. The limb bones and vertebrae of the reconstruction obscure the steel that now gives the animal its postmortem form. 

head of dinosaur sculpture sits behind pray paint and next to tools in workshop storage area.
Occasionally, Gaston Design will do life sculpting, imagining the skin and other features of prehistoric creatures, like this fictitious dinosaur. Theo Stroomer for Popular Science

But what matters is that the beast looks alive. The sweep of the reptile’s tail almost begs for visitors to envision the muscles, tendons, blood vessels, and other soft parts that must have draped around that skeleton when its kind wandered fern-covered flood plains. Somehow the human-made materials feel closer to the living animal than the degraded remnants of its ancient biomolecules.

The dichotomy between real and fake crumples when we encounter creatures that can be revived only through our imaginations. A paleontologist can certainly work from a collection of bones chipped out of the rock and come up with physical features and measurements, but such data often feels unsatisfying on its own. When those pieces mesh with our best guesses about missing bones, we can start to infer how big the animal was, how it might have acted, and what the Earth was like when we were nothing more than a distant possibility. These casts and reconstructions bring our dreams and nightmares from the Age of the Dinosaurs closer to existence. The dinosaurs we love to gaze at, with their mighty jaws and claws, don’t come to us straight from the rock, but truly come to life in a workshop off a rural Colorado road. 

Read more PopSci+ stories.

The post Museums are filled with fake dinosaur fossils. See what it takes to make those replicas. appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
The world’s earliest bees may have called Gondwana home https://www.popsci.com/environment/bee-evolution-gondwana/ Mon, 31 Jul 2023 15:00:00 +0000 https://www.popsci.com/?p=560109
A bee on a peach rose. Understanding how flowering plants and bees evolved together can help inform conservation efforts for pollinators and how to keep their populations healthy.
A bee on a peach rose. Understanding how flowering plants and bees evolved together can help inform conservation efforts for pollinators and how to keep their populations healthy. Deposit Photos

These ancient insects were likely buzzing around tropical flowers on the ancient supercontinent 120 million years ago.

The post The world’s earliest bees may have called Gondwana home appeared first on Popular Science.

]]>
A bee on a peach rose. Understanding how flowering plants and bees evolved together can help inform conservation efforts for pollinators and how to keep their populations healthy.
A bee on a peach rose. Understanding how flowering plants and bees evolved together can help inform conservation efforts for pollinators and how to keep their populations healthy. Deposit Photos

Some of our planet’s power pollinators may have originated tens of millions of years earlier than scientists once believed. In a study published July 27 in the journal Current Biology, a team of researchers traced bee genealogy back over 120 million years to the ancient supercontinent Gondwana. This former continent includes parts of present day Africa, Madagascar, South America, Australia, Antarctica, India, and Arabia, and it began to break apart during the early Jurassic period about 180 million years ago. 

[Related: Bee brains could teach robots to make split-second decisions.]

While looking deeper into bee history, the team found evidence that bees originated earlier, diversified faster, and spread wider than previously suspected, putting together pieces of a puzzle on the spatial origin of these pollinators. They likely originated in parts of present day Africa and South America before Gondwana broke apart.

In the study, an international team of scientists sequenced and compared genes from over 200 bee species. They then compared these bees with the traits from 185 different bee fossils and extinct fossils to develop an evolutionary history and genealogical model for how bees have historically been spread around the world. The team was able to analyze hundreds of thousands of genes at a time to make sure that the relationships they inferred were correct.  

“This is the first time we have broad genome-scale data for all seven bee families,” study co-author and Washington State University entomologist Elizabeth Murray said in a statement

Earlier studies established that the first bees potentially evolved from wasps, transitioning from predators up to collectors of pollen and nectar. According to this study, bees arose in the arid regions of western Gondwana during the early Cretaceous period, between 145 million years ago to 100.5 million years ago.

“There’s been a longstanding puzzle about the spatial origin of bees,” study co-author and Washington State University entomologist Silas Bossert said in a statement. “For the first time, we have statistical evidence that bees originated on Gondwana. We now know that bees are originally southern hemisphere insects.”

The team found evidence that as new continents formed, the bees moved northward. They continued to diversify and spread in parallel partnership with flowering plants called angiosperms. The bees later moved into India and Australia and all major bee families appear to have split off from one another before the beginning of the Tertiary period (65 million years ago). 

[Related: Like the first flying humans, honeybees use linear landmarks to navigate.]

The team believes that the exceptionally rich flora in the Western Hemisphere’s tropical regions may be due to their longtime association with bees. About 25 percent of all flowering plants belong to the large and diverse rose family of plants, and these beautiful flowers make up a large share of the tropical and temperate hosts for bees. 

The team plans to continue sequencing and studying the history and genetic profiles of more species of bees. Understanding how flowering plants and bees evolved together can help inform conservation efforts for pollinators and how to keep their populations healthy.

“People are paying more attention to the conservation of bees and are trying to keep these species alive where they are,” said Murray. “This work opens the way for more studies on the historical and ecological stage.”

The post The world’s earliest bees may have called Gondwana home appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>
Recently awoken 46,000-year-old nematodes already have 100 generations of babies https://www.popsci.com/environment/46000-year-old-nematodes-siberia/ Fri, 28 Jul 2023 15:00:00 +0000 https://www.popsci.com/?p=559773
A scanning electron picture of a female Panagrolaimus kolymaensis nematode.
A scanning electron picture of a female Panagrolaimus kolymaensis nematode. Alexei V. Tchesunov and Anastasia Shatilovich / Institute of Physicochemical and Biological Problems in Soil Science RAS

The last time these specimen were squirming about, Neanderthals were still around.

The post Recently awoken 46,000-year-old nematodes already have 100 generations of babies appeared first on Popular Science.

]]>
A scanning electron picture of a female Panagrolaimus kolymaensis nematode.
A scanning electron picture of a female Panagrolaimus kolymaensis nematode. Alexei V. Tchesunov and Anastasia Shatilovich / Institute of Physicochemical and Biological Problems in Soil Science RAS

A group of scientists uncovered a 46,000-year-old soil nematode from Siberian permafrost, and in an Sleeping Beauty-esque experiment woke the microscopic organism up from a millenniums’ long rest. The findings are described in a study published July 27 in the open access journal PLOS Genetics.

[Related: Oyster mushrooms release nerve gas to kill worms before eviscerating them.]

Also called roundworms, nematodes are a very adaptable group of sometimes microscopic animals. In addition to tardigrades and rotifers, some nematodes can survive harsh conditions by entering a dormant state known as cryptobiosis. This process basically shuts down the animals’ metabolic systems until they can be revived when environmental conditions become more favorable. 

After uncovering the animals in Siberia’s northern Kolyma River, the team successfully woke them from this frozen-in-time state. Radiocarbon analysis dated the roundworms to 45,839 to 47,769 years ago, when direwolves and Neanderthals were still on Earth

Sequencing the genome revealed that the roundworm is a new species of nematode. Panagrolaimus kolymaensis is a functionally extinct species and joins the ranks of some of Earth’s most ubiquitous organisms that dwell in water, soil, and on the ocean floor. 

P. kolymaensis‘s highly contiguous genome will make it possible to compare this feature to those of other Panagrolaimus species whose genomes are presently being sequenced by Schiffer’s team and colleagues,” study co-author and Director Emeritus at the DRESDEN-concept Genome Center Eugene Myers said in a statement

According to the team, nematodes do not require a lot of coaxing to wake up and wiggle around and make more little roundworms. They have since nurtured more than 100 generations of P. kolymaensis in the lab, where each new generation lasts about 8 to 12 days.

“Basically, you only have to bring the worms into amenable conditions, on a culture (agar) plate with some bacteria, some humidity and room temperature,” study co-author and University of Cologne zoologist Philipp Schiffer explained to Vice. “They just start crawling around then. They also just start reproducing. In this case this is even easier, as it is an all-female (asexual) species. They don‘t need to find males and have sex, they just start making eggs, which develop.”

In addition to the excitement of reviving a species that has been sleeping deep within the earth this long, studying these small spindle-shaped creatures may help scientists better understand how animals can adapt to habitat changes due to global warming and shifting weather patterns at a molecular level. 

[Related from PopSci+: Cave worms could hold the secrets to a better life.]

They found that mild dehydration exposure before freezing helped P. kolymaensis prepare for cryptobiosis and increased survival at -112 degrees Fahrenheit. The nematodes produced a sugar called trehalose when it was mildly dehydrated in the lab, potentially enabling it to endure these freezing and intense dehydration. 

“Our findings are essential for understanding evolutionary processes because generation times can range from days to millennia and because the long-term survival of a species’ individuals can result in the re-emergence of lineages that would otherwise have gone extinct,” study Schiffer said in a statement

The post Recently awoken 46,000-year-old nematodes already have 100 generations of babies appeared first on Popular Science.

Articles may contain affiliate links which enable us to share in the revenue of any purchases made.

]]>